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1  Definition 
A metaheuristic is a high-level problem-independent algorithmic framework that 
provides a set of guidelines or strategies to develop heuristic optimization algorithms 
(Sörensen and Glover, To appear). Notable examples of metaheuristics include 
genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony 
optimization, although many more exist. A problem-specific implementation of a 
heuristic optimization algorithm according to the guidelines expressed in a 
metaheuristic framework is also referred to as a metaheuristic. The term was coined 
by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of 
high-level) with heuristic (from the Greek heuriskein or euriskein, to search).  

Metaheuristic algorithms, i.e., optimization methods designed according to the 
strategies laid out in a metaheuristic framework, are — as the name suggests — 
always heuristic in nature. This fact distinguishes them from exact methods, that do 
come with a proof that the optimal solution will be found in a finite (although often 
prohibitively large) amount of time. Metaheuristics are therefore developed 
specifically to find a solution that is “good enough” in a computing time that is “small 
enough”. As a result, they are not subject to combinatorial explosion – the 
phenomenon where the computing time required to find the optimal solution of NP-
hard problems increases as an exponential function of the problem size. 

Metaheuristics have been demonstrated by the scientific community to be a 
viable, and often superior, alternative to more traditional (exact) methods of mixed-
integer optimization such as branch and bound and dynamic programming. Especially 
for complicated problems or large problem instances, metaheuristics are often able to 
offer a better trade-off between solution quality and computing time. Moreover, 
metaheuristics are more flexible than exact methods in two important ways. First, 
because metaheuristic frameworks are defined in general terms, metaheuristic 
algorithms can be adapted to fit the needs of most real-life optimization problems in 
terms of expected solution quality and allowed computing time, which can vary 
greatly accross different problems and different situations. Secondly, metaheuristics 
do not put any demands on the formulation of the optimization problem (like 
requiring constraints or objective functions to be expressed as linear functions of the 
decision variables). However, this flexibility comes at the cost of requiring 
considerable problem-specific adaptation to achieve good perfomance. 

The research field of metaheuristics is not without its critics – most of whom 
attack the perceived lack of universally applicable design methodology, the lack of 
scientific rigor in testing and comparing different implementations, and the tendency 
to create overly intricate methods with many different operators. Yet it is hard to 
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argue with success. The ability to obtain good solutions where other methods fail has 
made metaheuristics the method of choice for solving a majority of large real-life 
optimization problems, both in academic research and in practical applications. As a 
result, several commercial software vendors have implemented metaheuristics as their 
primary optimization engines, both in specialized software packages for production 
scheduling, vehicle routing (Sörensen et al., 2008) and nurse rostering (Burke et al., 
2004) as well as in general-purpose optimization and simulation packages (April 
et al., 2003, Fu, 2002, Glover et al., 1999). 

The underlying foundations of different metaheuristics vary significantly. Some 
model the optimization process by using a metaphor seemingly unrelated to 
optimization, such as natural evolution (genetic/evolutionary algorithms), the cooling 
of a crystalline solid (simulated annealing), or the behavior of animal swarms (e.g., 
ant colony optimization). Others, like tabu search, do not use such an intermediary 
level of explanation, but rather focus on exploiting the problem structure to improve 
the search for good solutions. In general, metaheuristics frameworks rely heavily on 
the use of randomness, although some completely deterministic strategies have also 
been proposed.  

Most metaheuristic frameworks have their origin in the 80’s (though in some 
cases roots can be traced to the mid 60’s and 70’s) and have enjoyed a steady rise in 
both use and popularity since the early 80’s. The metaheuristics field is currently the 
subject of a number of dedicated journals and conferences. EU/ME – the 
metaheuristics community2 is the EURO-sponsored working group on metaheuristics 
and, with about 1400 members, the largest platform for communication among 
metaheuristics researchers worlwide.  

2  A taxonomy of metaheuristics 
Metaheuristic algorithms attempt to find the best (feasible) solution out of all possible 
solutions of an optimization problem. To this end, they evaluate potential solutions 
and perform a series of operations on them in order to find different, better solutions. 
Metaheuristics operate on a representation or encoding of a solution, an object that 
can be stored in computer memory and can be conveniently manipulated by the 
different operators employed by the metaheuristic. Three fundamental classes of 
metaheuristics can be distinguished, based on the way in which solutions are 
manipulated. Local search metaheuristics iteratively make small changes to a single 
solution. Constructive metaheuristics construct solutions from their constituting parts. 
Population-based metaheuristics iteratively combine solutions into new ones. 
However, these classes are not mutually exclusive and many metaheuristic algorithms 
combine ideas from different classes. Such methods are called hybrid metaheuristics. 

2.1  Local search metaheuristics 
Local search metaheuristics find good solutions by iteratively making changes to a 
single solution, called the current solution. These changes are called moves and are 
typically “small” (so that adjacent solutions are relatively close to each other 
according to a natural metric), hence the name of this class of metaheuristics. The set 
of solutions that can be obtained by applying a single move to a given solution is 
called the neighborhood of that solution. Depending on the way the solution is 
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represented, different move types can be defined. Each move type gives rise to a 
neighborhood structure. 

In each iteration, the current solution is replaced by a solution from its 
neighborhood. The rule used to select the new current solution is called the move 
strategy or search strategy. A common search strategies is the steepest descent or 
steepest ascent strategy, in which the best move from the neighborhood is selected. 
Metaheuristics that use this strategy are often called hill-climbers. Other move 
strategies include the mildest ascent/descent, also called first improving, strategy, in 
which the first move is selected that improves the current solution. Selecting a 
random improving solution is another commonly used move strategy.  

A solution that is better than any solution in its neighborhood is called a local 
optimum (as opposed to a global optimum, i.e., a best possible solution to the 
optimization problem). When the current solution is a local optimum, a metaheuristic 
will use a strategy to “escape” this local optimum. It is this strategy that characterizes 
a metaheuristic, and usually the name of the metaheuristic is derived from it. 

Two simple, but commonly used, strategies are to apply a large random change 
(called perturbation) to the current solution or restart the search from a new random 
solution altogether. These strategies are called iterated local search (ILS) or multi-
start local search respectively (Lourenco et al., 2003).  

A second strategy is motivated by the fact that a local optimum relative to a 
specific move type can often be improved by using another move type. To exploit this 
fact, some metaheuristics define different move types and change the move type used 
once a local optimum has been reached. Such metaheuristics are commonly called 
variable neighborhood search (VNS) algorithms (Mladenović and Hansen, 1997). 
However, using more than one neighborhood is far more common in the 
metaheuristics literature and not restricted to algorithms labeled VNS (Sörensen et al., 
2008). 

A third strategy to find good solutions is to use information on the past progress 
of the search and record this information in memory structures. Metaheuristics that 
use this strategy are commonly grouped under the umbrella term tabu search (Glover, 
1989, 1990, 1996) algorithms (sometimes also called adaptive memory programming 
algorithms). Various types of memory structures are commonly used to remember 
specific properties of the trajectory through the search space that the algorithm has 
undertaken. A tabu list (from which the name of the metaheuristic framework derives) 
records the last encountered solutions (or some attributes of them) and forbids these 
solutions (or solutions containing one of the attributes) from being visited again as 
long as they are on the list. Alternatively, the tabu list may also record the last moves 
that have been made for the purpose of preventing them from being reversed. 
Whereas a tabu list can be viewed as a type of short-term memory, that records 
information on recently visited solutions, frequency memory is used as a type of long-
term memory. This memory structure records how often certain attributes have been 
encountered in solutions on the search trajectory, which allows the search to avoid 
visiting solutions that display the most often encountered attributes or to visit 
solutions with attributes seldom encountered. The decision on how to use the 
frequency memory can be based on the quality of the solutions in which the attributes 
were found, e.g., favoring attributes found in high-quality solutions. The 
metaheuristic called guided local search (GLS) (Voudouris and Tsang, 1999) 
introduces a different type of memory, called an augmented objective function, that 
includes a penalty factor for each potential element. When a local optimum is 
reached, the penalty factor for for all elements of the current solution is increased, 



which makes other elements (and therefore other moves) more attractive. This in turn 
allows the search to escape from the local optimum. (Tabu search also sometimes 
employs penalties as a way of implementing tabu restrictions.) 

One of the first metaheuristics developed, simulated annealing, mimics the 
annealing process of a crystalline solid. At each iteration, a random solution x' is 
selected from the neighborhood of the current solution x. This solution is “accepted” 
as the new current solution with probability e− [ f (x ')− f (x)]/T  where f(.) is the objective 
function value (to be maximized) of the solution between brackets and T is an 
endogenous parameter called the temperature. The probability of a solution being 
accepted is therefore higher if the solution is better, but also if the temperature is 
higher. The temperature is initially set to a high value, which leads to higher 
acceptance probabilities, and then gradually lowered as the search progresses 
(although it may be increased again at certain moments during the search). The 
function that describes the evolution of T throughout the different iterations is called 
the cooling schedule. Simulated annealing was first described in (Kirkpatrick et al., 
1983), based upon an algorithm by Metropolis et al. (1953). 

The recently proposed metaheuristic called relaxation induced local search 
(RINS) (Danna et al., 2005) constructs promising neighborhoods using information 
contained in the continuous relaxation of the mixed integer programming (MIP) 
model of the optimization problem. RINS has the advantage over other local search 
metaheuristics that it requires less problem-specific information, but this comes at the 
price of requiring the problem to be formulated as an MIP (Danna, 2004). This makes 
it easy to integrate RINS in a general-purpose MIP solver the method is currently 
available in the latest versions of LINDO/LINGO and CPLEX.  

2.2  Constructive metaheuristics 
Constructive metaheuristics, as their name suggests, construct solutions from their 
constituting elements rather than improving complete solutions. This is done by 
adding one element at a time to a partial solution, an operation that is also called a 
move. Constructive metaheuristics are often adaptations of greedy algorithms that add 
the best possible element at each iteration. To improve the quality of the final 
solutions, most constructive metaheuristics include a local search phase after the 
construction phase. 

GRASP, the acronym for greedy randomized adaptive search procedure (Feo and 
Resende, 1995), dampens the greediness of a constructive metaheuristic by using 
randomization. The most common variant of GRASP uses the following strategy. At 
each iteration, a restricted candidate list is updated, that contains the α best elements 
that can be added to the partial solution. A random element is selected from this list 
for addition, after which the list is updated to reflect the new situation. The parameter 
α determines the “greediness” of the search: if α equals 1, the search is completely 
greedy whereas if α is equal to the number of elements that can be added, the search 
is completely random. GRASP algorithms are often combined with a path relinking 
strategy (discussed later), see e.g., Commander et al. (2008), Nascimento et al. 
(2010), Resende et al. (2010). 

Another way to improve the performance of the construction process, without 
resorting to randomness, is by using memory. Notable examples of metaheuristics 
that do this can be found in Fleurent and Glover (1999) and Glover et al. (2000). 
Similarly, look-ahead strategies (Pearl, 1984) evaluate the elements that can be added 



by considering the effect not only of the next move, but of several moves into the 
future. The pilot method (Duin and Voß, 1999), for example, is a look-ahead method 
that uses a constructive heuristic to determine the value of a potential element by 
generating a complete solution from the current partial solution with this element 
added.  

Ant colony optimization (ACO) (Dorigo et al., 1996, 2006) is an umbrella term 
for a set of related constructive metaheuristics that build solutions by mimicking the 
foraging behavior of ants. To this end, an external parameter for each potential 
element (called the pheromone level) is introduced. A pheromone is a chemical factor 
that triggers a social response to other animals of the same species. Ant colony 
optimization employs multiple artificial agents (called ants) that each construct a 
solution in parallel. Once each ant has constructed a solution, the pheromone level of 
each element in this solution is updated to allocate more pheromone to elements that 
lie in better solutions. This information is then used in the construction process of 
ACO, which selects elements based on a combination of the value of that element and 
its pheromone level. The process of ants constructing solutions is repeated, and 
elements that were present in high quality solutions will receive a larger probability 
of being selected as a result of their higher pheromone levels. Periodically, the 
pheromone level of all elements is reduced to reflect evaporation. Ant colony 
optimization has received and continues to receive widespread attention in the 
popular press (e.g., Anonymous, 2010), probably as a result of the intuitive appeal of 
the metaphor. 

2.3  Population-based metaheuristics 
Population-based metaheuristics find good solutions by iteratively selecting and then 
combining existing solutions from a set, usually called the population. The most 
important members of this class are evolutionary algorithms because they mimick the 
principles of natural evolution. We use the term evolutionary algorithms as an 
umbrella term to encompass the wide range of metaheuristics based on evolution. 
This includes genetic algorithms (Goldberg et al., 1989, Holland, 1975) 
genetic/evolutionary programming (Koza, 1992), evolutionary computation (Fogel, 
2006) evolution strategies (Beyer and Schwefel, 2002), and many others.  

Evolutionary algorithms operate on a set or population of solutions and use two 
mechanisms to search for good solutions: the selection of predominantly high-quality 
solutions from the population and the recombination of those solutions into new ones, 
using specialized operators that combine the attributes of two or more solutions. After 
recombination, new solutions are reinserted into the population, possibly requiring 
them to satisfy conditions such as feasibility or minimum quality demands, to replace 
other (usually low-quality) solutions. Operators used in evolutionary algorithms 
(selection, recombination and reinsertion) almost without exception make heavy use 
of randomness. A mutation operator that randomly changes a solution after it has been 
recombined, is also frequently applied. Most evolutionary algorithms iterate the 
selection, recombination, mutation, and reinsertion phases a number of times, and 
report the best solution in the population. 

Deterministic population-based alternatives for evolutionary algorithms are 
scatter search and path relinking (Glover et al., 2000, 2003). Scatter search encodes 
solutions as (rounded) real-valued vectors and finds new solutions by generating 
convex or concave linear combinations of these vectors. Path relinking introduces the 
concept of a path between high-quality solutions, essentially a generalization of the 



concept of linear combination. Paths consist of elementary moves such as the ones 
used in local search metaheuristics. The moves on a path transform one solution 
(called the initiating solution) into a second solution (called the guiding solution) one 
move at a time. Path relinking can therefore be considered a local search heuristic that 
uses a move strategy in which the move to execute is chosen based on the fact that 
this move will bring the solution “closer” to the guiding solution. The selection of 
initiating and guiding solutions from a population (called the reference set), as well as 
the updating of the reference set once new solutions have been generated, are done 
according to deterministic rules in both path relinking and scatter search. 

2.4  “Hybdrid” metaheuristics 
In recent years, there is a tendency to view metaheuristic frameworks as providing 
general ideas or components that can be used to build optimization methods, rather 
than as cook book recipes that need to be closely followed (Michalewicz and Fogel, 
2004). As a result, most recent metaheuristic algorithms combine ideas from different 
classes and the term hybrid metaheuristic has lost most of its discriminatory power. 
Many modern metaheuristics use specialized heuristics to efficiently solve 
subproblems produced by the metaheuristic method (e.g., Gendreau et al., 1994). 
Similarly, a large number of local search metaheuristics use a construction phase to 
find an initial solution (or a set of initial solutions) from which to start the 
neighborhood search. In fact the original description of the GRASP metaheuristic 
(Feo and Resende, 1995) prescribes a local search phase to follow the greedy 
randomized construction phase.  

Algorithms belonging to the class of memetic algorithms (the only type of hybrid 
metaheuristic that has been given a specific name) (Moscato, 1989) combine 
recombination operators from the class of evolutionary algorithms with local search 
(meta)heuristics.  

2.5  Metaheuristics and exact methods 
Algorithmic developments in both metaheuristics and exact methods have recently 
drawn the two fields closely together, and combinations of metaheuristic components 
(usually local search) with exact methods for (mixed integer) linear programming are 
now common. Sometimes called matheuristics, the resulting methods often integrate 
existing exact procedures to solve subproblems generated by a decomposition 
strategy, a restriction strategy or a relaxation strategy (see, e.g., Glover and Klingman, 
1988, Rego, 2005). The results of solving these subproblems are used to guide a 
higher-level heuristic (Dumitrescu and Stützle, 2009, Raidl and Puchinger, 2008). 

Several additional ways in which exact methods can improve the performance of 
metaheuristics have been reported. Exact methods can sometimes solve small 
instances of a complex problem effectively. A metaheuristic may operate by 
constructing collections of such small instances as a strategy for generating 
“structured moves” that transition from a given solution to a new one (see, e.g., 
Glover, 2005). Also, an exact method can be run for a very long time to obtain 
optimal solutions (at least to some instances of a problem class), and these optimal 
solutions can be used in the learning approach called target analysis (Glover, 1990, 
Glover and Laguna, 1997) as a way to produce improved decision rules for both 
metaheuristics and exact methods.  

The result of combining a metaheuristic and an exact method does not 



necessarily have to be a heuristic method. Metaheuristics can be integrated with exact 
methods to improve the performance of the exact methods (Friden et al., 1989, 
Glover, 1990, Puchinger et al., 2009).  

In a similar way, ideas and operators from constraint programming techniques 
have been integrated with metaheuristics, such as in the approach called constraint-
based local search (Van Hentenryck and Michel, 2009).  

3  Metaheuristics for different optimization 
problems 

3.1  Continuous optimization 
Metaheuristics are predominantly used for combinatorial optimization, but can be 
effectively adapted for continuous optimization, although this adaptation process is 
more involved for some metaheuristics than for others. Scatter search (Glover et al., 
2000), particle swarm optimization (Kennedy et al., 1995) and an evolutionary 
approach called differential evolution (Storn and Price, 1997) are very naturally 
adapted to continuous problem domains. Most constructive and local search 
approaches on the other hand, require a considerable adaptation from their original 
formulation. Nonetheless, algorithms for continuous optimization based on tabu 
search (Chelouah and Siarry, 2000, Glover, 1994), GRASP (Hirsch et al., 2007), 
variable neighborhood search (Liberti and Drazič, 2005), and others, have been 
proposed. 

3.2  Multi-objective optimization 
Many optimization problems have multiple (conflicting) objectives, essentially 
rendering the concept of optimality meaningless since the best solution for one 
objective may not be the best for another. In multi-objective optimization the concept 
of dominance is therefore introduced. A solution is said to dominate another solution 
if its quality is at least as good on every objective and better on at least one. The set of 
all non-dominated solutions of an optimization problem is called the Pareto set and 
the projection of this set onto the objective function space is called the Pareto front. 
The aim of multi-objective metaheuristics is to approximate the Pareto front as 
closely as possible (Zitzler et al., 2004) and therefore generate a set of mutually non-
dominated solutions called the Pareto set approximation. Notwithstanding some 
exceptions (e.g., Czyżak et al., 1998, Hansen, 1997), most multi-objective 
metaheuristics belong to the class of evolutionary algorithms (Jones et al., 2002). This 
can be explained by observing that these algorithms naturally operate on a set of 
solutions. Examples of evolutionary multi-objective metaheuristics are the vector 
evaluated genetic algorithm (VEGA) (Schaffer, 1985), the non-dominated sorting 
algorithm (NDSA) (Srinivas and Deb, 1994), the multi-objective genetic algorithm 
(MOGA) (Fonseca and Fleming, 1993) and the improved strength pareto evolutionary 
algorithm (SPEA2) (Zitzler and Thiele, 1999). 

3.3  Stochastic optimization 
Stochastic (combinatorial) optimization problems include uncertain, stochastic or 



dynamic information in their parameters. The objective function value and the 
violation of constraints of such problems are therefore random variables. Evaluating a 
solution’s objective function value and/or it’s feasibility can be done either exactly (if 
a closed-form expression is available), by approximation or by Monte Carlo 
simulation. Metaheuristics using each of these possibilities have been proposed to 
solve different stochastic problems (Bianchi et al., 2009, Ribeiro and Resende, 2010). 

4  Research in metaheuristics 

4.1  Conferences 
MIC, the metaheuristics international conference is the premier conference on 
metaheuristics. A yearly EU/MEeting is organized by EU/ME in collaboration with a 
research group and focuses on a specific (and changing) topic. The Matheuristics 
conference series has recently emerged to discuss combinations of metaheuristics 
with exact methods. The Learning and Intelligent Optimization conferences aim at 
exploring the boundaries between machine learning, artificial intelligent, 
mathematical programming and algorithms for optimization. 

Many conferences are dedicated exclusively to evolutionary algorithms. These 
include Parallel Problem Solving From Nature (PPSN), the Genetic and Evolutionary 
Computation Conference (GECCO), EvoStar (a multi-conference comprising 
EuroGP, EvoCOP, EvoBIO, and EvoApplications), Evolutionary Multi-Criterion 
Optimization (EMO), and the IEEE Congress on Evolutionary Computation (CEC). 

The Ants conference series focuses on research in swarm intelligence methods. 
Besides these specialized conferences, metaheuristics hold a prominent position 

in general Operations Research conferences such as INFORMS, IFORS, and EURO. 

4.2  Journals 
Several scientific journals are dedicated to the topic of metaheuristics. The Journal of 
Heuristics is the most important one, and also the oldest journal to exclusively focus 
on (meta)heuristics. Two relatively young journals, the International Journal of 
Metaheuristics and the International Journal of Applied Metaheuristic Computing 
(IJAMC)), have recently been founded. However, a large majority of articles on 
metaheuristics are published in general Operations Research journals. 

Again, the field of evolutionary algorithms has its own share of journals: 
Evolutionary Computation, IEEE Transactions on Evolutionary Computation, 
Genetic Programming and Evolvable Machines, and the Journal of Artificial 
Evolution and Applications. 

The swarm intelligence area has a dedicated journal appropriately called Swarm 
Intelligence. 

5  Metaheuristics software 
Most metaheuristics require considerable problem-specific design and tuning before 
they achieve world-class performance. Although a great deal of research effort is 
currently being invested in the development of more robust methods, the need for 
problem-specific design in order to obtain the best results has not inhibited the use of 
metaheuristics in general optimization software. 



Nevertheless, several vendors of commercial general-purpose optimization 
software have included metaheuristics in their packages. Frontline Systems’ Risk 
Solver Platform and its derivatives, an extension of the Microsoft Excel solver, 
include a hybrid evolutionary solver. Tomlab/GENO is a package for static or 
dynamic, single- or multi-objective optimization based on a real-coded genetic 
algorithm. Both LINDO/LINGO and CPLEX include the relaxation induced 
neighborhood search (RINS) metaheuristic. 

The COIN-OR library has several (open source) metaheuristics software 
packages: METSlib, an object oriented metaheuristics optimization framework, and 
Open Tabu Search (OTS), a framework for constructing tabu search algorithms.  

Besides these solvers for combinatorial optimization, most commercial 
simulation packages today include an optimization tool (Fu, 2002). Autostat, included 
in AutoMod and Simrunner, included in ProModel both use evolutionary algorithms. 
A variety of companies in the simulation industry, as well as general management 
service and consulting firms like Rockwell Software, Dassault Systemes, Flextronics, 
Halliburton, HP, Planview and CACI, employ Opttek Systems, Inc. software 
OptQuest, which uses tabu search and scatter search.  
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