
METAHEURISTICS1
Kenneth Sörensen
University of Antwerp, Belgium

Fred Glover
University of Colorado and OptTek Systems, Inc., USA

1 Definition
A metaheuristic is a high-level problem-independent algorithmic framework that
provides a set of guidelines or strategies to develop heuristic optimization algorithms
(Sörensen and Glover, To appear). Notable examples of metaheuristics include
genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony
optimization, although many more exist. A problem-specific implementation of a
heuristic optimization algorithm according to the guidelines expressed in a
metaheuristic framework is also referred to as a metaheuristic. The term was coined
by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of
high-level) with heuristic (from the Greek heuriskein or euriskein, to search).

Metaheuristic algorithms, i.e., optimization methods designed according to the
strategies laid out in a metaheuristic framework, are — as the name suggests —
always heuristic in nature. This fact distinguishes them from exact methods, that do
come with a proof that the optimal solution will be found in a finite (although often
prohibitively large) amount of time. Metaheuristics are therefore developed
specifically to find a solution that is “good enough” in a computing time that is “small
enough”. As a result, they are not subject to combinatorial explosion – the
phenomenon where the computing time required to find the optimal solution of NP-
hard problems increases as an exponential function of the problem size.

Metaheuristics have been demonstrated by the scientific community to be a
viable, and often superior, alternative to more traditional (exact) methods of mixed-
integer optimization such as branch and bound and dynamic programming. Especially
for complicated problems or large problem instances, metaheuristics are often able to
offer a better trade-off between solution quality and computing time. Moreover,
metaheuristics are more flexible than exact methods in two important ways. First,
because metaheuristic frameworks are defined in general terms, metaheuristic
algorithms can be adapted to fit the needs of most real-life optimization problems in
terms of expected solution quality and allowed computing time, which can vary
greatly accross different problems and different situations. Secondly, metaheuristics
do not put any demands on the formulation of the optimization problem (like
requiring constraints or objective functions to be expressed as linear functions of the
decision variables). However, this flexibility comes at the cost of requiring
considerable problem-specific adaptation to achieve good perfomance.

The research field of metaheuristics is not without its critics – most of whom
attack the perceived lack of universally applicable design methodology, the lack of
scientific rigor in testing and comparing different implementations, and the tendency
to create overly intricate methods with many different operators. Yet it is hard to

1 (in press) In Gass, S.I. and M.C. Fu (eds) Encyclopedia of Operations Research and

Management Science (3e) Springer, New York.

argue with success. The ability to obtain good solutions where other methods fail has
made metaheuristics the method of choice for solving a majority of large real-life
optimization problems, both in academic research and in practical applications. As a
result, several commercial software vendors have implemented metaheuristics as their
primary optimization engines, both in specialized software packages for production
scheduling, vehicle routing (Sörensen et al., 2008) and nurse rostering (Burke et al.,
2004) as well as in general-purpose optimization and simulation packages (April
et al., 2003, Fu, 2002, Glover et al., 1999).

The underlying foundations of different metaheuristics vary significantly. Some
model the optimization process by using a metaphor seemingly unrelated to
optimization, such as natural evolution (genetic/evolutionary algorithms), the cooling
of a crystalline solid (simulated annealing), or the behavior of animal swarms (e.g.,
ant colony optimization). Others, like tabu search, do not use such an intermediary
level of explanation, but rather focus on exploiting the problem structure to improve
the search for good solutions. In general, metaheuristics frameworks rely heavily on
the use of randomness, although some completely deterministic strategies have also
been proposed.

Most metaheuristic frameworks have their origin in the 80’s (though in some
cases roots can be traced to the mid 60’s and 70’s) and have enjoyed a steady rise in
both use and popularity since the early 80’s. The metaheuristics field is currently the
subject of a number of dedicated journals and conferences. EU/ME – the
metaheuristics community2 is the EURO-sponsored working group on metaheuristics
and, with about 1400 members, the largest platform for communication among
metaheuristics researchers worlwide.

2 A taxonomy of metaheuristics
Metaheuristic algorithms attempt to find the best (feasible) solution out of all possible
solutions of an optimization problem. To this end, they evaluate potential solutions
and perform a series of operations on them in order to find different, better solutions.
Metaheuristics operate on a representation or encoding of a solution, an object that
can be stored in computer memory and can be conveniently manipulated by the
different operators employed by the metaheuristic. Three fundamental classes of
metaheuristics can be distinguished, based on the way in which solutions are
manipulated. Local search metaheuristics iteratively make small changes to a single
solution. Constructive metaheuristics construct solutions from their constituting parts.
Population-based metaheuristics iteratively combine solutions into new ones.
However, these classes are not mutually exclusive and many metaheuristic algorithms
combine ideas from different classes. Such methods are called hybrid metaheuristics.

2.1 Local search metaheuristics
Local search metaheuristics find good solutions by iteratively making changes to a
single solution, called the current solution. These changes are called moves and are
typically “small” (so that adjacent solutions are relatively close to each other
according to a natural metric), hence the name of this class of metaheuristics. The set
of solutions that can be obtained by applying a single move to a given solution is
called the neighborhood of that solution. Depending on the way the solution is

2 http://metaheuristics.eu

represented, different move types can be defined. Each move type gives rise to a
neighborhood structure.

In each iteration, the current solution is replaced by a solution from its
neighborhood. The rule used to select the new current solution is called the move
strategy or search strategy. A common search strategies is the steepest descent or
steepest ascent strategy, in which the best move from the neighborhood is selected.
Metaheuristics that use this strategy are often called hill-climbers. Other move
strategies include the mildest ascent/descent, also called first improving, strategy, in
which the first move is selected that improves the current solution. Selecting a
random improving solution is another commonly used move strategy.

A solution that is better than any solution in its neighborhood is called a local
optimum (as opposed to a global optimum, i.e., a best possible solution to the
optimization problem). When the current solution is a local optimum, a metaheuristic
will use a strategy to “escape” this local optimum. It is this strategy that characterizes
a metaheuristic, and usually the name of the metaheuristic is derived from it.

Two simple, but commonly used, strategies are to apply a large random change
(called perturbation) to the current solution or restart the search from a new random
solution altogether. These strategies are called iterated local search (ILS) or multi-
start local search respectively (Lourenco et al., 2003).

A second strategy is motivated by the fact that a local optimum relative to a
specific move type can often be improved by using another move type. To exploit this
fact, some metaheuristics define different move types and change the move type used
once a local optimum has been reached. Such metaheuristics are commonly called
variable neighborhood search (VNS) algorithms (Mladenović and Hansen, 1997).
However, using more than one neighborhood is far more common in the
metaheuristics literature and not restricted to algorithms labeled VNS (Sörensen et al.,
2008).

A third strategy to find good solutions is to use information on the past progress
of the search and record this information in memory structures. Metaheuristics that
use this strategy are commonly grouped under the umbrella term tabu search (Glover,
1989, 1990, 1996) algorithms (sometimes also called adaptive memory programming
algorithms). Various types of memory structures are commonly used to remember
specific properties of the trajectory through the search space that the algorithm has
undertaken. A tabu list (from which the name of the metaheuristic framework derives)
records the last encountered solutions (or some attributes of them) and forbids these
solutions (or solutions containing one of the attributes) from being visited again as
long as they are on the list. Alternatively, the tabu list may also record the last moves
that have been made for the purpose of preventing them from being reversed.
Whereas a tabu list can be viewed as a type of short-term memory, that records
information on recently visited solutions, frequency memory is used as a type of long-
term memory. This memory structure records how often certain attributes have been
encountered in solutions on the search trajectory, which allows the search to avoid
visiting solutions that display the most often encountered attributes or to visit
solutions with attributes seldom encountered. The decision on how to use the
frequency memory can be based on the quality of the solutions in which the attributes
were found, e.g., favoring attributes found in high-quality solutions. The
metaheuristic called guided local search (GLS) (Voudouris and Tsang, 1999)
introduces a different type of memory, called an augmented objective function, that
includes a penalty factor for each potential element. When a local optimum is
reached, the penalty factor for for all elements of the current solution is increased,

which makes other elements (and therefore other moves) more attractive. This in turn
allows the search to escape from the local optimum. (Tabu search also sometimes
employs penalties as a way of implementing tabu restrictions.)

One of the first metaheuristics developed, simulated annealing, mimics the
annealing process of a crystalline solid. At each iteration, a random solution x' is
selected from the neighborhood of the current solution x. This solution is “accepted”
as the new current solution with probability e− [f (x ')− f (x)]/T where f(.) is the objective
function value (to be maximized) of the solution between brackets and T is an
endogenous parameter called the temperature. The probability of a solution being
accepted is therefore higher if the solution is better, but also if the temperature is
higher. The temperature is initially set to a high value, which leads to higher
acceptance probabilities, and then gradually lowered as the search progresses
(although it may be increased again at certain moments during the search). The
function that describes the evolution of T throughout the different iterations is called
the cooling schedule. Simulated annealing was first described in (Kirkpatrick et al.,
1983), based upon an algorithm by Metropolis et al. (1953).

The recently proposed metaheuristic called relaxation induced local search
(RINS) (Danna et al., 2005) constructs promising neighborhoods using information
contained in the continuous relaxation of the mixed integer programming (MIP)
model of the optimization problem. RINS has the advantage over other local search
metaheuristics that it requires less problem-specific information, but this comes at the
price of requiring the problem to be formulated as an MIP (Danna, 2004). This makes
it easy to integrate RINS in a general-purpose MIP solver the method is currently
available in the latest versions of LINDO/LINGO and CPLEX.

2.2 Constructive metaheuristics
Constructive metaheuristics, as their name suggests, construct solutions from their
constituting elements rather than improving complete solutions. This is done by
adding one element at a time to a partial solution, an operation that is also called a
move. Constructive metaheuristics are often adaptations of greedy algorithms that add
the best possible element at each iteration. To improve the quality of the final
solutions, most constructive metaheuristics include a local search phase after the
construction phase.

GRASP, the acronym for greedy randomized adaptive search procedure (Feo and
Resende, 1995), dampens the greediness of a constructive metaheuristic by using
randomization. The most common variant of GRASP uses the following strategy. At
each iteration, a restricted candidate list is updated, that contains the α best elements
that can be added to the partial solution. A random element is selected from this list
for addition, after which the list is updated to reflect the new situation. The parameter
α determines the “greediness” of the search: if α equals 1, the search is completely
greedy whereas if α is equal to the number of elements that can be added, the search
is completely random. GRASP algorithms are often combined with a path relinking
strategy (discussed later), see e.g., Commander et al. (2008), Nascimento et al.
(2010), Resende et al. (2010).

Another way to improve the performance of the construction process, without
resorting to randomness, is by using memory. Notable examples of metaheuristics
that do this can be found in Fleurent and Glover (1999) and Glover et al. (2000).
Similarly, look-ahead strategies (Pearl, 1984) evaluate the elements that can be added

by considering the effect not only of the next move, but of several moves into the
future. The pilot method (Duin and Voß, 1999), for example, is a look-ahead method
that uses a constructive heuristic to determine the value of a potential element by
generating a complete solution from the current partial solution with this element
added.

Ant colony optimization (ACO) (Dorigo et al., 1996, 2006) is an umbrella term
for a set of related constructive metaheuristics that build solutions by mimicking the
foraging behavior of ants. To this end, an external parameter for each potential
element (called the pheromone level) is introduced. A pheromone is a chemical factor
that triggers a social response to other animals of the same species. Ant colony
optimization employs multiple artificial agents (called ants) that each construct a
solution in parallel. Once each ant has constructed a solution, the pheromone level of
each element in this solution is updated to allocate more pheromone to elements that
lie in better solutions. This information is then used in the construction process of
ACO, which selects elements based on a combination of the value of that element and
its pheromone level. The process of ants constructing solutions is repeated, and
elements that were present in high quality solutions will receive a larger probability
of being selected as a result of their higher pheromone levels. Periodically, the
pheromone level of all elements is reduced to reflect evaporation. Ant colony
optimization has received and continues to receive widespread attention in the
popular press (e.g., Anonymous, 2010), probably as a result of the intuitive appeal of
the metaphor.

2.3 Population-based metaheuristics
Population-based metaheuristics find good solutions by iteratively selecting and then
combining existing solutions from a set, usually called the population. The most
important members of this class are evolutionary algorithms because they mimick the
principles of natural evolution. We use the term evolutionary algorithms as an
umbrella term to encompass the wide range of metaheuristics based on evolution.
This includes genetic algorithms (Goldberg et al., 1989, Holland, 1975)
genetic/evolutionary programming (Koza, 1992), evolutionary computation (Fogel,
2006) evolution strategies (Beyer and Schwefel, 2002), and many others.

Evolutionary algorithms operate on a set or population of solutions and use two
mechanisms to search for good solutions: the selection of predominantly high-quality
solutions from the population and the recombination of those solutions into new ones,
using specialized operators that combine the attributes of two or more solutions. After
recombination, new solutions are reinserted into the population, possibly requiring
them to satisfy conditions such as feasibility or minimum quality demands, to replace
other (usually low-quality) solutions. Operators used in evolutionary algorithms
(selection, recombination and reinsertion) almost without exception make heavy use
of randomness. A mutation operator that randomly changes a solution after it has been
recombined, is also frequently applied. Most evolutionary algorithms iterate the
selection, recombination, mutation, and reinsertion phases a number of times, and
report the best solution in the population.

Deterministic population-based alternatives for evolutionary algorithms are
scatter search and path relinking (Glover et al., 2000, 2003). Scatter search encodes
solutions as (rounded) real-valued vectors and finds new solutions by generating
convex or concave linear combinations of these vectors. Path relinking introduces the
concept of a path between high-quality solutions, essentially a generalization of the

concept of linear combination. Paths consist of elementary moves such as the ones
used in local search metaheuristics. The moves on a path transform one solution
(called the initiating solution) into a second solution (called the guiding solution) one
move at a time. Path relinking can therefore be considered a local search heuristic that
uses a move strategy in which the move to execute is chosen based on the fact that
this move will bring the solution “closer” to the guiding solution. The selection of
initiating and guiding solutions from a population (called the reference set), as well as
the updating of the reference set once new solutions have been generated, are done
according to deterministic rules in both path relinking and scatter search.

2.4 “Hybdrid” metaheuristics
In recent years, there is a tendency to view metaheuristic frameworks as providing
general ideas or components that can be used to build optimization methods, rather
than as cook book recipes that need to be closely followed (Michalewicz and Fogel,
2004). As a result, most recent metaheuristic algorithms combine ideas from different
classes and the term hybrid metaheuristic has lost most of its discriminatory power.
Many modern metaheuristics use specialized heuristics to efficiently solve
subproblems produced by the metaheuristic method (e.g., Gendreau et al., 1994).
Similarly, a large number of local search metaheuristics use a construction phase to
find an initial solution (or a set of initial solutions) from which to start the
neighborhood search. In fact the original description of the GRASP metaheuristic
(Feo and Resende, 1995) prescribes a local search phase to follow the greedy
randomized construction phase.

Algorithms belonging to the class of memetic algorithms (the only type of hybrid
metaheuristic that has been given a specific name) (Moscato, 1989) combine
recombination operators from the class of evolutionary algorithms with local search
(meta)heuristics.

2.5 Metaheuristics and exact methods
Algorithmic developments in both metaheuristics and exact methods have recently
drawn the two fields closely together, and combinations of metaheuristic components
(usually local search) with exact methods for (mixed integer) linear programming are
now common. Sometimes called matheuristics, the resulting methods often integrate
existing exact procedures to solve subproblems generated by a decomposition
strategy, a restriction strategy or a relaxation strategy (see, e.g., Glover and Klingman,
1988, Rego, 2005). The results of solving these subproblems are used to guide a
higher-level heuristic (Dumitrescu and Stützle, 2009, Raidl and Puchinger, 2008).

Several additional ways in which exact methods can improve the performance of
metaheuristics have been reported. Exact methods can sometimes solve small
instances of a complex problem effectively. A metaheuristic may operate by
constructing collections of such small instances as a strategy for generating
“structured moves” that transition from a given solution to a new one (see, e.g.,
Glover, 2005). Also, an exact method can be run for a very long time to obtain
optimal solutions (at least to some instances of a problem class), and these optimal
solutions can be used in the learning approach called target analysis (Glover, 1990,
Glover and Laguna, 1997) as a way to produce improved decision rules for both
metaheuristics and exact methods.

The result of combining a metaheuristic and an exact method does not

necessarily have to be a heuristic method. Metaheuristics can be integrated with exact
methods to improve the performance of the exact methods (Friden et al., 1989,
Glover, 1990, Puchinger et al., 2009).

In a similar way, ideas and operators from constraint programming techniques
have been integrated with metaheuristics, such as in the approach called constraint-
based local search (Van Hentenryck and Michel, 2009).

3 Metaheuristics for different optimization
problems

3.1 Continuous optimization
Metaheuristics are predominantly used for combinatorial optimization, but can be
effectively adapted for continuous optimization, although this adaptation process is
more involved for some metaheuristics than for others. Scatter search (Glover et al.,
2000), particle swarm optimization (Kennedy et al., 1995) and an evolutionary
approach called differential evolution (Storn and Price, 1997) are very naturally
adapted to continuous problem domains. Most constructive and local search
approaches on the other hand, require a considerable adaptation from their original
formulation. Nonetheless, algorithms for continuous optimization based on tabu
search (Chelouah and Siarry, 2000, Glover, 1994), GRASP (Hirsch et al., 2007),
variable neighborhood search (Liberti and Drazič, 2005), and others, have been
proposed.

3.2 Multi-objective optimization
Many optimization problems have multiple (conflicting) objectives, essentially
rendering the concept of optimality meaningless since the best solution for one
objective may not be the best for another. In multi-objective optimization the concept
of dominance is therefore introduced. A solution is said to dominate another solution
if its quality is at least as good on every objective and better on at least one. The set of
all non-dominated solutions of an optimization problem is called the Pareto set and
the projection of this set onto the objective function space is called the Pareto front.
The aim of multi-objective metaheuristics is to approximate the Pareto front as
closely as possible (Zitzler et al., 2004) and therefore generate a set of mutually non-
dominated solutions called the Pareto set approximation. Notwithstanding some
exceptions (e.g., Czyżak et al., 1998, Hansen, 1997), most multi-objective
metaheuristics belong to the class of evolutionary algorithms (Jones et al., 2002). This
can be explained by observing that these algorithms naturally operate on a set of
solutions. Examples of evolutionary multi-objective metaheuristics are the vector
evaluated genetic algorithm (VEGA) (Schaffer, 1985), the non-dominated sorting
algorithm (NDSA) (Srinivas and Deb, 1994), the multi-objective genetic algorithm
(MOGA) (Fonseca and Fleming, 1993) and the improved strength pareto evolutionary
algorithm (SPEA2) (Zitzler and Thiele, 1999).

3.3 Stochastic optimization
Stochastic (combinatorial) optimization problems include uncertain, stochastic or

dynamic information in their parameters. The objective function value and the
violation of constraints of such problems are therefore random variables. Evaluating a
solution’s objective function value and/or it’s feasibility can be done either exactly (if
a closed-form expression is available), by approximation or by Monte Carlo
simulation. Metaheuristics using each of these possibilities have been proposed to
solve different stochastic problems (Bianchi et al., 2009, Ribeiro and Resende, 2010).

4 Research in metaheuristics

4.1 Conferences
MIC, the metaheuristics international conference is the premier conference on
metaheuristics. A yearly EU/MEeting is organized by EU/ME in collaboration with a
research group and focuses on a specific (and changing) topic. The Matheuristics
conference series has recently emerged to discuss combinations of metaheuristics
with exact methods. The Learning and Intelligent Optimization conferences aim at
exploring the boundaries between machine learning, artificial intelligent,
mathematical programming and algorithms for optimization.

Many conferences are dedicated exclusively to evolutionary algorithms. These
include Parallel Problem Solving From Nature (PPSN), the Genetic and Evolutionary
Computation Conference (GECCO), EvoStar (a multi-conference comprising
EuroGP, EvoCOP, EvoBIO, and EvoApplications), Evolutionary Multi-Criterion
Optimization (EMO), and the IEEE Congress on Evolutionary Computation (CEC).

The Ants conference series focuses on research in swarm intelligence methods.
Besides these specialized conferences, metaheuristics hold a prominent position

in general Operations Research conferences such as INFORMS, IFORS, and EURO.

4.2 Journals
Several scientific journals are dedicated to the topic of metaheuristics. The Journal of
Heuristics is the most important one, and also the oldest journal to exclusively focus
on (meta)heuristics. Two relatively young journals, the International Journal of
Metaheuristics and the International Journal of Applied Metaheuristic Computing
(IJAMC)), have recently been founded. However, a large majority of articles on
metaheuristics are published in general Operations Research journals.

Again, the field of evolutionary algorithms has its own share of journals:
Evolutionary Computation, IEEE Transactions on Evolutionary Computation,
Genetic Programming and Evolvable Machines, and the Journal of Artificial
Evolution and Applications.

The swarm intelligence area has a dedicated journal appropriately called Swarm
Intelligence.

5 Metaheuristics software
Most metaheuristics require considerable problem-specific design and tuning before
they achieve world-class performance. Although a great deal of research effort is
currently being invested in the development of more robust methods, the need for
problem-specific design in order to obtain the best results has not inhibited the use of
metaheuristics in general optimization software.

Nevertheless, several vendors of commercial general-purpose optimization
software have included metaheuristics in their packages. Frontline Systems’ Risk
Solver Platform and its derivatives, an extension of the Microsoft Excel solver,
include a hybrid evolutionary solver. Tomlab/GENO is a package for static or
dynamic, single- or multi-objective optimization based on a real-coded genetic
algorithm. Both LINDO/LINGO and CPLEX include the relaxation induced
neighborhood search (RINS) metaheuristic.

The COIN-OR library has several (open source) metaheuristics software
packages: METSlib, an object oriented metaheuristics optimization framework, and
Open Tabu Search (OTS), a framework for constructing tabu search algorithms.

Besides these solvers for combinatorial optimization, most commercial
simulation packages today include an optimization tool (Fu, 2002). Autostat, included
in AutoMod and Simrunner, included in ProModel both use evolutionary algorithms.
A variety of companies in the simulation industry, as well as general management
service and consulting firms like Rockwell Software, Dassault Systemes, Flextronics,
Halliburton, HP, Planview and CACI, employ Opttek Systems, Inc. software
OptQuest, which uses tabu search and scatter search.

About the Authors:
Kenneth Sorensen (http://antor.ua.ac.be/kenneth.sorensen) is a Research Professor of
the Faculty of Applied Economics at Antwerp, and is founder and member of the
coordinating team of EU/ME – the metaheuristics community, the largests online
forum for metaheuristics researchers.
Fred Glover (http://spot.colorado.edu/~glover) is Distinguished Professor of the
University of Colorado System and Chief Technology Officer of OptTek Systems,
Inc.

References
Anonymous. Riders on a swarm. The Economist, 12 August 2010.
J. April, F. Glover, J. Kelly, and M. Laguna. Practical introduction to simulation

optimization. In S. Chick, T. Sanchez, D. Ferrin, and D. Morrice, editors,
Proceedings of the 2003 Winter Simulation Conference, 2003.

H.G. Beyer and H.P. Schwefel. Evolution strategies–A comprehensive introduction.
Natural computing, 1(1):3–52, 2002.

L. Bianchi, M. Dorigo, L.M. Gambardella, and W.J. Gutjahr. A survey on
metaheuristics for stochastic combinatorial optimization. Natural Computing,
8(2):239–287, 2009.

E. Burke, P. De Causmaecker, S. Petrovic, and G.V. Berghe. Variable neighborhood
search for nurse rostering problems. In M.G.C. Resende, J. Pinho de Sousa, and
A.Viana, editors, Metaheuristics: computer decision-making, pages 153–172.
Kluwer Academic Publishers, 2004.

R. Chelouah and P. Siarry. Tabu search applied to global optimization. European
Journal of Operational Research, 123 (2):256–270, 2000.

C. Commander, P. Festa, C.A.S. Oliveira, P.M. Pardalos, M.G.C. Resende, and
M. Tsitselis. Grasp with path-relinking for the cooperative communication
problem on ad hoc networks. In D.A. Grundel, R.A. Murphey, P.M. Pardalos,
and O.A. Prokopyev, editors, Cooperative Networks: Control and Optimization,
pages 187–207. Edward Elgar Publishing, 2008.

P. Czyżak et al. Pareto simulated annealing-a metaheuristic technique for multiple-

objective combinatorial optimization. Journal of Multi-Criteria Decision
Analysis, 7 (1):34–47, 1998.

E. Danna. Integrating local search techniques into mixed integer programming. 4OR:
A Quarterly Journal of Operations Research, 2 (4):321–324, 2004.

E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102(1):71–90, 2005.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, man, and cybernetics, Part
B: Cybernetics, 26(1):29–41, 1996.

M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE
Computational Intelligence Magazine, 1 (4):28–39, 2006.

C. Duin and S. Voß. The Pilot method: A strategy for heuristic repetition with
application to the Steiner problem in graphs. Networks, 34(3):181–191, 1999.

I. Dumitrescu and T. Stützle. Usage of exact algorithms to enhance stochastic local
search algorithms. In V. Maniezzo, T. Stützle, and S. Voß, editors,
Matheuristics: Hybridizing Metaheuristics and Mathematical Programming,
volume 10 of Annals of Information Systems. Springer, 2009.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2): 109–133, 1995.

C. Fleurent and F. Glover. Improved constructive multistart strategies for the
quadratic assignment problem using adaptive memory. INFORMS Journal on
Computing, 11(2): 198–204, 1999.

D.B. Fogel. Evolutionary computation: toward a new philosophy of machine
intelligence. Wiley-IEEE Press, 2006.

C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Proceedings of the fifth
international conference on genetic algorithms, pages 416–423. Citeseer, 1993.

C. Friden, A. Hertz, and D. de Werra. TABARIS: An exact algorithms based on tabu
search for finding a maximum independent set in a graph. Working paper, Swiss
Federal Institute of Technology, Lausanne, 1989.

M.C. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on
Computing, 14(3): 192–215, 2002.

M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle routing
problem. Management Science, 40(10):1276–1290, 1994.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549, 1986.

F. Glover. Tabu search-part I. ORSA journal on Computing, 1(3):190–206, 1989.
F. Glover. Tabu search-part II. ORSA Journal on computing, 2(1):4–32, 1990.
F. Glover. Tabu search nonlinear and parametric optimization (with links to genetic

algorithms). Discrete Applied Mathematics, 49:231–255, 1994.
F. Glover. Tabu search and adaptive memory programming: Advances, applications

and challenges. In Barr, Helgason, and Kennington, editors, Interfaces in
Computer Science and Operations Research. Kluwer Academic Publishers,
1996.

F. Glover. Adaptive memory projection methods for integer programming. In C. Rego
and B. Alidaee, editors, Metaheuristic optimization via memory and evolution,
pages 425–440. Kluwer Academic Publishers, 2005.

F. Glover and D. Klingman. Layering strategies for creating exploitable structure in
linear and integer programs. Mathematical Programming, 40(1):165–181, 1988.

F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, Boston, 1997.

F. Glover, J. Kelly, and M. Laguna. New advances wedding simulation and
optimization. In D. Kelton, editor, Proceedings of the 1999 Winter Simulation
Conference, 1999.

F. Glover, M. Laguna, and R. Martì. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: Advances and
applications. Handbook of metaheuristics, pages 1–35, 2003.

D.E. Goldberg et al. Genetic algorithms in search, optimization, and machine
learning. Addison-wesley Reading Menlo Park, 1989.

M.P. Hansen. Tabu search for multiobjective optimization: MOTS. In Proceedings of
the 13th International Conference on Multiple Criteria Decision Making
(MCDM’97), Cape Town, South Africa, pages 574–586. Citeseer, 1997.

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende. Global optimization
by continuous GRASP. Optimization Letters, 1(2):201–212, 2007.

J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

DF Jones, SK Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An
overview of the current state-of-the-art. European journal of operational
research, 137 (1):1–9, 2002.

J. Kennedy, R.C. Eberhart, et al. Particle swarm optimization. In Proceedings of IEEE
international conference on neural networks, volume 4, pages 1942–1948,
1995.

S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671, 1983.

J.R. Koza. Genetic programming: on the programming of computers by means of
natural selection. The MIT press, 1992.

L. Liberti and M. Drazič. Variable neighbourhood search for the global optimization
of constrained NLPs. Proceedings of GO, pages 1–5, 2005.

H. Lourenco, O. Martin, and T. St
"utzle. Iterated local search. Handbook of metaheuristics, pages 320–353, 2003.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, et al.
Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6): 1087, 1953.

Z. Michalewicz and D.B. Fogel. How to solve it: modern heuristics. Springer-Verlag
New York Inc, 2004.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11): 1097–1100, 1997.

P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech Concurrent Computation Program, C3P
Report, 826:1989, 1989.

M.C.V. Nascimento, M.G.C. Resende, and F.M.B. Toledo. Grasp heuristic with path-
relinking for the multi-plant capacitated lot sizing problem. European Journal
of Operational Research, 200: 747–754, 2010.

J. Pearl. Heuristics–intelligent search strategies for computer problem solving.
Addison-Wesley Publishing Co., Reading, MA, 1984.

J. Puchinger, G.R. Raidl, and S. Pirkwieser. Metaboosting: Enhancing integer
programming techniques by metaheuristics. In V. Maniezzo, T. Stützle, and
S. Voß, editors, Matheuristics: Hybridizing Metaheuristics and Mathematical
Programming, volume 10 of Annals of Information Systems. Springer, 2009.

G.R. Raidl and J. Puchinger. Combining (integer) linear programming techniques and

metaheuristics for combinatorial optimization. In In C. Blum, M.J. Blesa
Aguilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics: An
Emerging Approach to Optimization, volume 114 of Studies in Computational
Intelligence. Springer, 2008.

C. Rego. RAMP: A new metaheuristic framework for combinatorial optimization. In
C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory and
Evolution: Tabu Search and Scatter Search, pages 441–460. Kluwer Academic
Publishers, 2005.

M.G.C. Resende, R. Martí, M. Gallego, and A. Duarte. Grasp and path relinking for
the max-min diversity problem. Computers and Operations Research, 37:498–
508, 2010.

C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for
stochastic local search algorithms. Research technical report, AT&T Labs, 2010.

J.D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms. In Proceedings of the 1st International Conference on Genetic
Algorithms, pages 93–100. L. Erlbaum Associates Inc., 1985.

N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary computation, 2(3):221–248, 1994.

R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization,
11(4): 341–359, 1997.

K. Sörensen and F. Glover. Metaheuristics. In S.I. Gass and M. Fu, editors,
Encyclopedia of Operations Research and Management Science, New York, To
appear. Springer.

K. Sörensen, M. Sevaux, and P. Schittekat. “Multiple neighbourhood search” in
commercial VRP packages: evolving towards self-adaptive methods, volume
136 of Lecture Notes in Economics and Mathematical Systems, chapter
Adaptive, self-adaptive and multi-level metaheuristics, pages 239–253.
Springer, London, 2008.

P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT Press,
2009.

C. Voudouris and E. Tsang. Guided local search and its application to the traveling
salesman problem. European Journal of Operational Research, 113 (2):469–
499, 1999.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE transactions on Evolutionary
Computation, 3 (4):257, 1999.

E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiobjective
optimization. In X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt,
editors, Metaheuristics for multiobjective optimization, volume 535 of Lecture
Notes in Economics and Mathematical Systems, pages 3–38, Berlin, 2004.
Springer.

