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Two-group classification is a key task in decision making and data mining applications. We introduce two
new mixed integer programming formulations that make use of multiple separating hyperplanes. They
represent a generalization of previous piecewise-linear models that embed rules having the form of
hyperplanes, which are used to successively separate the two groups. In fact, the classifiers obtained are
particular types of decision trees which are allowed to grow in depth and not in width. Computational results
show that our models achieve better classification accuracy in less time than previous approaches.
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1. Introduction

One of the key tools for classifying data in real-world data mining
applications [15] is DiscriminantAnalysis. This technique is fundamental
to business applications in marketing, accounting, advertizing, sales,
manufacturing financial analysis, strategic planning and many other
domains [5,6,16,17,19,22,23,26]. It is a crucial component of any decision
that involves determining which people, groups, elements or processes
to target in order to achieve desired goals or to implement particular
policies most effectively. Recent contributions to this area grow out of
mathematical programming approaches based onmultivariate decision
trees, piecewise-linear models, data envelopment analysis and kernel-
based classifiers [2,7,10]. These models are commonly formulated with
the goal of classifying data into two groups, although they can be easily
adapted to accommodate more classes.

The induction of multivariate decision trees (MDTs) consists in
finding a binary tree where, at each internal node, the data set is
recursively split by ahyperplane into twoparts, andwhere each leaf node
is associated with one group, determining in this fashion the predicted
group for each object [21]. The methods to build MDTs, such as OC1 [18],
are often based on a two-step procedure: a construction step, which
consists of a heuristic algorithm that builds the initialMDT, and a pruning
step, which aims to reduce its size, enhancing both the accuracy and
the interpretability of the final result. Support Vector Machine (SVM)
methods [7] usually rely on a limited number of known kernel
transformations to project the data set into a high-dimensional space
with the hope of rendering it linearly separable. Despite their good
performance (provided that a suitable kernel is available), they do not
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provide interpretable classification rules. Finally, piecewise-linearmodels
solve the classification problem directly, finding a set of hyperplanes that
forms, in fact, a MDT. Therefore, they have both advantages of optimality
and interpretability. An additional advantage is that these models,
including the reigning one, proposed by [12], have stringent require-
ments that limit their ability to handle complex structures. For example,
they require that the elements of one group lie in a convex region, so they
must be solved twice: each time constraining one group to lie in the
convex region. Recently, [25] have explored the application of discrimi-
nant analysis and have compared it to the use of data envelopment
analysis in a detailed assessment of corporate failure. The authors
additionally employ these tools to analyze performance in the Japanese
construction industry in [24]. Our present work may be viewed as an
extensionof the typesof classificationmethodologyused in these studies,
and provides a basis for carrying out this classification analysis in greater
depth to refine the inferences obtained.

In this paper, in order to providemodels that have useful features for
classification problems arising in real-world contexts, we present two
mixed integer formulations for the induction of MDTs, which we call
Vertical Decision Tree and Cutting Decision Tree. These new formulations
build on the sequence of progressively more advanced classification
models that beganwith the original goal programmingmodels of [9]. By
this connection, our present workmay be viewed as having a link to the
goal programming model conceptions of [3] and of [4]. Our models
overcomemany of the defects of the existing classifiers based on similar
techniques. We overcome them by the following efforts:

1. Constructing aMDT through an exact algorithm, without relying on
any heuristic and/or pruning procedures;

2. Generalizingpiecewise-linear approaches byeliminating the require-
ment that one group must lie in a convex region, and by using
significantly fewer binary variables (about a 50% reduction), and

3. Not projecting the data into high-dimensional space, which avoids
the problem of finding a suitable kernel.
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Fig. 1. Single and multiple separating hyperplanes, where we separate round elements
from diamonds elements.
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Both models prevent the tree from growing in width by
guaranteeing the presence of at least one leaf node at each depth
(or level) of the tree. Furthermore, in the case of the Cutting Decision
Tree, the model requires that the misclassifications – if any – happen
only at the maximum depth of the tree. We show that this apparent
limitation allows the depth of the tree to be parametrically decided
and does not lead to a decrease in classification accuracy. In fact, the
Cutting Decision Tree model uses fewer binary variables and its
solution times are significantly shorter. Our models outperform
the one proposed by Glen [10–12], both in terms of accuracy and
computing time, and obtain similar or better results than SVMs
and OC1. Our models are particularly suitable for those real-world
classification problems whose classification rules can be expressed as
a logical expression involving many conditions (rather than a single
condition), where a “condition” refers to a linear combination of
attributes. For example, consider the following logical expression
involving 4 attributes a, b, c, and d:

a≥ b AND c≤ 2d

Due to its tree structure, our approachmay find a classification rule
that uses this expression to discriminate between the two groups of
objects. On the other hand, approaches using a single separating
hyperplane cannot find this kind of logical pattern. For example, DEA
cannot find any set of coefficients that yields the logical expression
above.

The next section of the paper provides background information
about the classification problem and reviews relevant literature on
single and multiple hyperplane formulations that provide the context
for ourmodels. Then, we introduce our two newmathematical models
mentioned above and report on computational tests that evaluate the
accuracy on twowell-established benchmark data sets to demonstrate
the advantages of our approaches with respect to state-of-the-art
alternatives. Finally, we summarize our conclusions and opportunities
for future research.

2. Hyperplane-based classification

Let aij denote the value of a specific characteristic of an element in
a data set, where each element i (i=1,…, m) is described by a range of
attributes j (j=1,…, n). We seek to classify these elements in such a
manner that correctly identifies whether a vector Ai=(ai1,…, ain) for a
given element i should result in classifying the element as belonging
to Group 1 or Group 2 (denoted G1 and G2, respectively).

The decision rules we investigate here are based on hyperplane
separation approaches, viewing the Ai vectors as points in an n-
dimensional space. In the simplest case, these approaches use a single
hyperplane, characterized by a vector X=(x1,…, xn) and a scalar b, to
differentiate the points Ai for i∈G1 from the points for i∈G2, according
to the following decision rule:

AiX b b for i∈G1 and AiX N b for i∈ G2 ð1Þ

Previous studies have proposed mixed integer formulations that
aim to minimize the number of misclassifications by a single
separating hyperplane (see [1,10,11,13,22]). However, these formula-
tions have various deficiencies, and generally require an excessive
number of variables. For example, recent formulations [10,11] require
doubling the number of original xj variables by splitting each one into
a positive and negative part, and then introducing a normalization
constraint that sets the sum of these variables to 1.

On the other hand, the common goal of piecewise-linear models
and MDTs is to approximate more complex structures in the under-
lying data than those that can be achieved by a single hyperplane, as
shown in Fig.1. Thus, we refer to these techniques asMulti-hyperplane
approaches.
Glen (see [12]) introduced a mixed integer model that constructs a
set of piecewise-linear segments in order to separate elements into
two groups, requiring that the elements in one of the groups lie in a
convex region (i.e. the piecewise-linear segments must form a convex
region). Because of the convexity assumption, the model must be
solved twice to determinewhich group should be treated as convex to
provide better results. Apart from doubling the number of xj variables
by splitting them into xj

+ and xj
− (as in a special ordered set), the

model also makes use of additional binary variables in every hyper-
plane constraint to determine whether the element lies in the convex
region or not.

3. Multi-hyperplane models for multivariate decision trees

This section describes our two proposedMulti-hyperplanemodels,
which aim to build a Vertical Decision Tree and a Cutting Decision
Tree, respectively. We begin by defining each type of decision tree as
follows:

Definition 1. Vertical Decision Tree.

A Vertical Decision Tree (VDT) is a MDT for which each internal
node is a parent of at least one leaf node.

Thus, at each depth except for its maximum depth d⁎, the elements
lying on one side of the hyperplane are classified into one of the two
groups, while the classification of the residual elements is delegated to
the hyperplane at the subsequent depth. Fig. 2 illustrates the structure
of a general VDT whose depth is d⁎=3 (it uses 3 hyperplanes). We
seek to separate points represented as circles (which belong to G1)
from points represented as diamonds (which belong to G2). In
illustrations throughout this paper, the left child of any internal
node corresponds to G1, and the right child corresponds to G2. This
implies that leaf nodes associated with G1 can appear only as left
children, and leaf nodes associated with G2 only as right children. Note
that this assumption reflects only on the graphical notation that we
use, and does not cause any loss of generality. The points are separated
by three hyperplanes, denoted by h1, h2 and h3. The decision boundary
is formed by segments PQ, QR and RS of the three hyperplanes. The
dark diamonds depicted in Fig. 2a, o1 and o2, are misclassified by
the tree. Fig. 2b indicates the leaf nodes where they fall. We consider
that an element e “falls into” a (leaf or internal) node n if e encounters
n throughout the path made by classifying e [20].

Definition 2. Cutting Decision Tree.

A Cutting Decision Tree (CDT) is a VDT where misclassifications at
intermediate leaves are not allowed.



Fig. 2. a) Shows a data set where circles belong to G1 and diamonds to G2; The corresponding VDT with d⁎=3 is shown in b) the numbers in the leaf nodes indicate the associated
group. Objects o1 and o2 are misclassified: they fall into the wrong leaf node at respectively depths 1 and 3.
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Thus, classification errors – if any – may only occur at maximum
depthd⁎. The classificationprocedure aims to “cut”part of thedata set at
each level by compelling all the elements of one group to lie on one side
of thehyperplane. TheVDT in Fig. 2b is not a CDT, sinceo2 ismisclassified
at depth d=1. However, if we deleted o2 from the data set the tree
would be a CDT, because o1, which would then be the only misclassified
element and falls in a leaf node located at the last level of the tree.
3.1. A model for vertical decision trees

We first provide a model for inducing a VDT. For the sake of
simplicity, we limit our formulation to the case of VDTs of depth
d⁎=3. The type of tree induced is determined by the position of its
internal nodes and leaf nodes. Fig. 3 shows all possible VDT types for
the case where d⁎=3. The top two rows shown in Fig. 3 denote the
meaning of special binary variables sl1 and sl2, which we will call
slicing variables. These variables constitute our structure variables,
since they define the particular structure of the induced tree.
Specifically, if sl1=0, the tree will be “sliced” to the right at depth 1.
Hence, the right node at depth 2 must be a leaf node associated with
G2. Conversely, if sl1=1, the right node will be an internal node and
the left node a leaf node associated with G1. The same logic applies for
depth 2, where sl2 indicates whether the tree is sliced on the right
(sl2=0) or on the left (sl2=1).
Fig. 3. All possible VDT
Fig. 3 lists the 4 types of tree: tree (0, 0), (0, 1), (1, 0) and (1, 1),
where the numbers in parenthesis correspond respectively to the
value of sl1 and sl2. The complete mathematical model for a VDT of
maximum depth d⁎=3 can be expressed as follows:

Let zi⁎ =
0 if object i is correctly classified by the tree

1otherwise

( )

Let zid =
0 if object i is correctly classified by hyperplane hd; according to Eq: ð1Þ
1otherwise

( )

Because the goal is to minimize the number of misclassified
elements, the objective function is simply:

Minimize∑
n

i=1
zi⁎

First, we include the hyperplane constraints that are based on
inequalities (1) for each depth d of the tree:

Ai Xd −Mzid ≤ bd − ε for i∈ G1; d = 1;2;3
Ai Xd + Mzid ≥ bd + ε for i∈G2;d = 1;2;3

where ε is a constant quantity that we treat parametrically to induce
a “separation zone” in order to prevent points of both groups from
ending up exactly on the boundary.
types for d⁎=3.
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We then include constraints that identify the optimal tree
structure for the data set for classification purposes. Thus, for tree
type (0,0), we write:

Mðsl1 + sl2Þ + zi⁎≥ zi1 + zi2 + zi3 − 2 for i∈G1

Mðsl1 + sl2Þ + Mzi⁎≥ zi1 + zi2 + zi3 for i∈G2

where M is a large constant. Only when sl1=0 and sl2=0, the actual
constraints will zi⁎ ≥ zi1 + zi2 + zi3−2 (for i∈G1) and Mzi⁎ ≥ zi1 +
zi2 + zi3(for i∈G2) be “activated.” So, for a (0,0) tree, an object of G1

is misclassified only if it is misclassified by all 3 hyperplanes, while
an object of G2 is misclassified if it is misclassified by at least one
hyperplane. Similarly, constraints for tree type (1,1) will only be
activated when sl1 and sl2 are both equal to 1. These constraints are:

Mð2− sl1 − sl2Þ + Mzi⁎≥ zi1 + zi2 + zi3 for i∈G1

Mð2− sl1 − sl2Þ + zi⁎≥ zi1 + zi2 + zi3�2 for i∈ G2

For tree types (0,1) and (1,0), the logic is similar in that the
appropriate part of the constraints will be active when the slicing
variables have the corresponding value. However, for these types of
trees, the decision structure requires additional constraints. We use an
additional binary variable wi to activate or deactivate certain “either-
or” constraints. For example, the constraints for tree (0,1) are:

Mð1 + sl1 − sl2Þ + zi⁎≥ zi1 −Mwi for i∈ G1

Mð1 + sl1 − sl2Þ + Mzi⁎≥ zi2 + zi3 −Mð1−wiÞ for i∈ G1

Mð1 + sl1 − sl2Þ + zi⁎≥ zi1 for i∈G2

Mð1 + sl1 − sl2Þ + zi⁎≥ zi2 + zi3 − 1 for i∈ G2

When sl1=0 and sl2=1, these constraints are activated, in which
case the variableswi are used to express the fact that a correctly classified
element of G1 is correctly classified either by hyperplane h1 or by both
hyperplane h2 and hyperplane h3. An element of G2, on the other hand,
will be correctly classified by the tree if it is correctly classified either by
hyperplanes h1 and h2 or by hyperplanes h1 and h3. The case that
corresponds to tree type (1,0) is just a mirror image of the previous case.

Let M be a “large” constant as a proxy for an unknown upper
bound1; let ε be a “small” constant to induce a strict (non-zero)
displacement from a hyperplane, and let G be the union of G1 and G2.
We can now formulate the full d⁎=3 VDT model as follows:

Minimize∑
n

i=1
zi⁎ ð1:1Þ

Subject to

AiXd –Mzdi ≤ bd – ε for i∈G1; d = 1;2;3 ð1:2Þ

AiXd + Mzdi ≥ bd – ε for i∈ G2; d = 1;2;3 ð1:3Þ

Mðsl1 + sl2Þ + zi⁎≥ zi1 + zi2 + zi3 – 2 for i∈G1 ð1:4Þ

Mðsl1 + sl2Þ + Mzi⁎≥ zi1 + zi2 + zi3 for i∈G2 ð1:5Þ
Mð2 – sl1 – sl2Þ + Mzi⁎≥ zi1 + zi2 + zi3 for i∈G1 ð1:6Þ
Mð2 – sl1 – sl2Þ + zi⁎≥ zi1 + zi2 + zi3 – 2 for i∈ G2 ð1:7Þ
1 The value ofM can be made to depend on the inequality in which it appears, and in
cases where problem information or preprocessing allows M to be reduced, the
resulting model can often be solved more efficiently by existing solution methods.
Mð1 + sl1 – sl2Þ + zi⁎≥ zi1 –Mwi for i∈ G1 ð1:8Þ

Mð1 + sl1 – sl2Þ + Mzi⁎≥ zi2 + zi3 –Mð1 –wiÞ for i∈ G1 ð1:9Þ

Mð1 + sl1 – sl2Þ + zi⁎≥ zi1 for i∈G2 ð1:10Þ

Mð1 + sl1 – sl2Þ + zi⁎≥ zi2 + zi3 – 1 for i∈ G2 ð1:11Þ

Mð1 – sl1 + sl2Þ + zi⁎≥ zi1 for i∈G1 ð1:12Þ

Mð1 – sl1 + sl2Þ + zi⁎≥ zi2 + zi3 – 1 for i∈ G1 ð1:13Þ

Mð1 – sl1 + sl2Þ + zi⁎≥ zi1 –Mwi for i∈ G2 ð1:14Þ

Mð1 – sl1 + sl2Þ + Mzi⁎≥ zi2 + zi3 –Mð1 –wiÞ for i∈ G2 ð1:15Þ

∑
n

j=1
∑
3

d=1
xjd = 1 normalization ð1:16Þ

zi⁎∈ f0;1g i∈G ð1:17Þ

zid ∈ f0;1g i∈ G; d = 1;2;3 ð1:18Þ

wi ∈ f0;1g i∈G ð1:19Þ

slk ∈ f0;1g k = 1;2 ð1:20Þ

x; b unrestricted ð1:21Þ

The normalization constraint (1.16) sets the sum of all xj variables
to 1 (or any constant value), and is necessary to avoid problems arising
from rotations or translations of the data and to be able to handle
negative data. To cover the possible cases, this normalization must
utilize both a positive and a negative constant term (i.e.,−1 as well as
1). We have chosen the positive variant for convenience, but more
general considerations about this and other forms of normalization
are discussed in [14].

Although this model performs well for d⁎=3 (as shown later in
our Experiments and results section), it has a clear limitation: the
formulation strongly depends on d⁎, which is clearly a disadvantage.
Also, as d⁎ increases the number of tree types increases at the rate of
2d⁎ and so do the binary slicing variables. Given these limitations, we
developed a general model for CDTs which, on one hand, introduces
the limitation of allowing misclassifications only at depth d=d⁎. But,
on the other hand, it is fully general for any givenmaximumdepth and
the number of variables grows linearly with d⁎.

3.2. A model for cutting decision trees

For each depth d we use variables xd, bd and zid, corresponding to
the same variables of the VDT model. Since misclassifications at
intermediate depths are not allowed, now the objective function
involves only the last level of the tree:

Minimize∑
i∈G

zid⁎

Note that, at each depth d of a CDT, one group is entirely correctly
classified. Otherwise, there would be forbidden misclassifications. For
each depth d=1,… d⁎−1, a binary variable yd indicates which group
is correctly classified at depth d:

yd =
0 if all of G1 is correctly classified by hyperplane hd according to Eq: ð1Þ;

1 if all of G2 is correctly classified by hyperplane hd according to Eq: ð1Þ

8<
:
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This definition implies that if yd=0, then zid=0 for all i∈G1.
Conversely, if yd=1, then zid=0 for all i∈G2. At any given depth d
except the final one,

yd ⋅ zid for all i∈ G1

1− yd ⋅ zid for all i∈ G2

so that all elements of either group G1 or G2 are correctly classified.
Also, variable yd automatically determines the direction in which the
tree grows at depth d: if yd=0, the tree grows to the left (Fig. 4a). If
yd=1, the tree grows to the right (Fig. 4b). Whether or not element i
falls into the leaf node at level d is indicated by the binary variables vid
(one for each element i∈G and depth d=1,…, d⁎−1):

vid =
0 if i does not fall into the leaf node at depth d:

1 if i falls into the leaf node at depth d:

(

The relationships among yd, vid and zid are represented in Fig. 4.
Considering Fig. 4a (Fig. 4b is analogous), the objects of G2 falling into
the leaf node have zid=0 and vid=1, and the objects of G2 falling into
the internal node at depth d+1 have zid=1 and vid=0. Meanwhile,
the objects of G1, which all fall into the internal node at depth d+1,
have zid=0 and vid=0. These conditions are expressed through the
constraints:

vid ≤ yd i∈G1; d = 1;…;d⁎−1

vid ≤ 1− yd i∈G2; d = 1;…;d⁎−1

vid ≤ 1 – zid i∈ G; d = 1; :::;d⁎−1

It follows that the necessary conditions for an element i to be
misclassified by a CDT are:

1. It does not fall into any leaf at depth dbd⁎; that is, vid=0 for each
dbd⁎;

2. The last hyperplane misclassifies it, that is zid⁎=1.

Then, the hyperplane constraints become:

Aixd −M ∑
d−1

h=1
vih + zid

 !
≤ bd − ε i∈ G1; d = 1;…;d⁎

Aixd + M ∑
d−1

h=1
vih + zid

 !
≥ bd + ε i∈ G2; d = 1;…;d⁎

Thus, the complete formulation of the CDT model is:

Minimize∑
i∈G

ziD ð2:1Þ

Subject to:

Aixd −M ∑
d−1

h=1
vih + zid

 !
≤ bd − ε i∈ G1; d = 1;…;d⁎ ð2:2Þ

Aixd + M ∑
d−1

h=1
vih + zid

 !
≥ bd + ε i∈ G2; d = 1;…;d⁎ ð2:3Þ

yd ≥ zid i∈ G1; d = 1;…; d⁎−1 ð2:4Þ

1 – yd ≥ zid i∈G2 d = 1;…;d⁎−1 ð2:5Þ

vid ≤ yd i∈G1; d = 1;…;d⁎−1 ð2:6Þ

vid ≤ 1 – yd i∈G2; d = 1;…;d⁎−1 ð2:7Þ
vid ≤ 1 – zid i∈G; d = 1; :::;d⁎−1 ð2:8Þ

∑
D

d=1
∑
F

j=1
xjd = 1 “Normalization” ð2:9Þ

xd; bd unrestricted d = 1;…;d⁎ ð2:10Þ

zid ∈ f0;1g d = 1;…;d⁎ ð2:11Þ

yid ∈ f0;1g d = 1;…;d⁎−1 ð2:12Þ

0≤ vid ≤ 1 d = 1;…;d⁎−1 ð2:13Þ

Since the objective functions of both VDT and CDT models aim at
minimizing the number of misclassified points, bothmodels may have
multiple equivalent optimal solutions of value v, each corresponding
to a set of misclassified points whose cardinality is v. A possible
improvement is to define an objective function that has the second
goal of maximizing the distance of the correctly classified points to the
misclassification region.

4. Experiments and results

We tested ourmodels on two benchmark data sets from real-world
applications, providing a basis to compare our outcomes with other
models. In particular, the performance of the VDT and CDT models is
compared to our implementation of the piecewise-linear model
proposed by [12], which separates the two groups with 3 hyperplanes
and requires one group to lie in a convex region. We first tested the 3
models on the Japanese Banks data set, provided by [23], which
Glen showed to be separable by three hyperplanes. For this reason,
we used depth d⁎=3 for all of our tests. In order to eliminate
large discrepancies in scale among the attribute values, we first
standardized the data using the following standardization:

Vij =
ðvij−−vjÞ

sj
;

where Vij is the standardized value of attribute j for element i, vij is the
original value of attribute j for element i, v�j is the sample mean for
attribute j and sj is the sample standard deviation for attribute j.

We used the leave-one-out (LOO) testing procedure, which is an
n-fold cross validation, where n is the cardinality of the data set (in the
Japanese Banks data set, n=100). The LOO “hit rate” is the percentage
of correct classifications of the holdout elementwith respect to the total
number of tests performed [8]. We treated ε as a parameter in all three
models (VDT, CDT, and Glen), testing for various “separation zone”
widths. We ran Glen's model twice, alternating the convexity require-
ment between G1 and G2, and recorded the outcome that produced the
best LOO classification. Even if ourmain goal is to compare against Glen
(see [12]), we also report the results obtained by OC1 and SVM. We
used the implementation of OC1 available at http://www.cs.jhu.edu/
~salzberg/announce-oc1.html (accessed on 5th December 2008), and
the implementation of SVMs called SMO, available in Weka [27]. All
tests were performed using CPLEX version 10.0, on a Dell Dimension
8400 workstation equipped with a Pentium 4 processor at 3.60 GHz
and 1.0 GB RAM. We used parameter M=1000. Tables 1 and 2
summarize our results.

As Table 1 shows, both tree-based models perform comparatively
well and neither dominates the other. However, in terms of com-
putational complexity and scalability, the CDT model shows a slight
advantage even at the present level (although 23, which identifies the
complexity of the VDT model, is not a large number). Compared to
Glen in terms of testing accuracy, our models perform better in the
majority of cases. Furthermore, on average, each LOO test (meant as

http://www.cs.jhu.edu/~salzberg/announce-oc1.html
http://www.cs.jhu.edu/~salzberg/announce-oc1.html


Fig. 4. Relation among yd, zid and vid. If yd=0 (a), the tree grows to the left, then the objects of G2 that fall on the right (into a leaf node associated with G2) are correctly classified by
the tree at depth d (zid=0, vid=1). Conversely, objects of both groups may fall on the left: those of G1 have zid=0, vid=0, those of G2 have zid=1, vid=0. If yd=1 (b), the situation
is symmetric.
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the set of all 100 runs, each composed by training and testing the
classifier) takes 245.4 s for the VDT model and 100.9 s for the CDT
model. Our implementation of Glen's piecewise-linear model takes an
average of 228.3 s for each LOO test. Notably, our models obtain a
higher accuracy than OC1 and SVM.

Next, we tested our models on another well-known data set: the
Wisconsin Breast Cancer database, available online from the UCI data
management repository (http://archive.ics.uci.edu/ml/ accessed on
5th December 2008). The data set consists of 683 patients screened
for breast cancer (cases with missing values excluded), and 9
attributes per case. The class variable is binary, representing a benign
or a malignant tumor. Since the domain and scale of all the descriptive
attributes are the same, no standardization of the data was necessary.

Aswith the Japanese Banks, we ran various tests for different values
of ε. It should be noted that for these tests, given the size of the data set,
we decided to set a time limit of 120 s per holdout element test, at
which time we recorded the best solution found. We found that, in
most cases, the solutionwas either optimal (0 misclassifications in the
training set) or very close to optimal (1 or 2 misclassifications). The
trade-off between classification accuracy and the time to obtain an
optimal solution greatly justified the use of a time limit. Table 3
Table 2
Time (in seconds) for each LOO test for the Japanese Banks data set.

ε VDT CDT Glen SVM OC1

0.0005 201.0 7.5 126.9 10.2 181.9
0.0010 240.2 8.5 126.6
0.0100 245.8 165.2 113.6
0.0200 258.1 120.5 142.2
0.0300 256.4 117.4 168.1
0.0400 254.4 186.3 414.4
0.0450 261.9 101.0 506.2

Table 1
LOO hit rates for Japanese Banks.

ε VDT CDT Glen SVM OC1

0.0005 84 84 86 87 80
0.0010 89 88 86
0.0100 88 88 85
0.0200 86 90 85
0.0300 87 86 81
0.0400 92 89 85
0.0450 88 90 90
summarizes the results for ε=0.00004, 0.00005 and 0.00006. We ran
experiments with different orders of magnitude for ε, but the results
did not vary significantly from the ones reported here.

As Table 3 shows, the CDT model outperforms both the VDT model
and Glen's model. It must be noted that our models can separate this
data set by using three hyperplanes, while the piecewise-linear
model, due to its convexity requirement, fails to do so. Both OC1 and
SVM obtain a higher accuracy than CDT, but solving CDT takes less
time (see Table 4) than OC1 and may find interpretable rules, unlike
SVM. CDT is almost twice as fast as Glen, while the VDT model does
not scale up efficiently to this large data set (average LOO test times
were above 12,000 s). Although CDT is significantly faster than Glen,
we believe that it would be computationally impractical to solve
exactly our model in order to classify very large data sets (e.g.
hundreds of attributes and millions of observations).

For both data sets, we performed a paired Student's t-test to assess
whether there is a statistically significant difference between the
accuracy obtained by our methods and the one obtained by Glen, for
the same value of ε. The accuracy obtained by CDT is significantly
higher (at α=0.05) than the one obtained by Glen (the p-value is
equal to 0.0253 for the test on the Japanese Banks data set, and 0.004
for the one on the Breast Cancer data set). On the other hand, the
accuracy obtained by VDT is not significantly higher than the one
obtained by Glen. Therefore, we can conclude that CDT dominates
Glen's approach.

In terms of the model complexity, Table 5 shows the number of
binary variables, total variables, and constraints for eachmodel. Glen's
model is very complex, in that it uses a large number of binary
variables, both in absolute terms and in comparison to the number of
total variables. Although Glen's model uses fewer constraints than
our models, its hyperplane constraints involve the use of two types of
Table 3
LOO hit rates for Breast Cancer data set.

ε VDT CDT Glen SVM OC1

0.00004 80.4 92.8 84.6 97.07 96.19
0.00005 86.6 94.2 84.6
0.00006 84.2 91.5 84.6

Table 4
Average time (in seconds) for each LOO test for the Breast Cancer data set.

VDT CDT Glen SVM OC1

12,000 600 1200 86 1232.1

http://archive.ics.uci.edu/ml/


Table 5
Size of the optimization problems for Breast Cancer data.

Model characteristics VDT CDT Glen

Binary variables 3412 2048 4396
Total variables 3442 4124 4453
Equality constraints 1 1 3
Total constraints 6139 6139 4574
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binary variables (due to the convexity requirement) and twice the
number of continuous variables.

5. Conclusions and future research

VDTs and CDTs constitute an innovation in the area of decision trees
that has a broad application to important problems in real-world data
mining. Our models produce particular tree structures that are
constrained not to grow inwidth. The benefit of this constraint consists
in the simplicity of the models and – in the case of the CDT – their
straight-forward generalization to any maximum depth. Our results
show that this apparent limitation does not affect the accuracy obtained.

Both models compare favorably in accuracy and speed to the main
previous mixed integer Multi-hyperplane model. The improved speed
promises to have valuable consequences for solving larger and more
complex classification problems. Finally, the ability of our approach to
operate without being confined by the convexity requirement of the
piecewise-linear model yields additional advantages for dealing with
problems where this requirement is inappropriate. On the other hand,
our approach would not be suitable to classify very large data sets;
furthermore it can handle only cross-sectional data, i.e. the observations
in thedata set are independent items that canbe thoughtof as belonging
to a sample taken at the same time. To perform a longitudinal analysis,
where information relative to different times is available for each items,
an appropriate design of the attributes is needed to represent the trend
of the characteristics of each item through time.

The advances in modeling flexibility and in classification power
made possible by our new formulations represent onemore link in the
chain of contributions originally stimulated by the goal programming
model conception of [4]. The present formulations may in this sense
be viewed as a way of generalizing and adapting the goal program-
ming framework to include special forms of discrete conditions that
enable it to apply more effectively to non-convex decision spaces in
the context of classification analysis.

We envision several avenues for future research. First, our mixed
integer models exhibit special structure that makes them susceptible
to tailored accelerated and scalable solution methods. These tailored
methods can take greater advantage of the linear programming
relaxations of these models than customary procedures in today's
state-of-the-art MIP software packages, by means of post-optimality
analysis. In addition, the mechanisms underlying linear programming
post-optimality analysis can also be used to generate new attributes
for classification, to yield special non-linear and logic-based combina-
tions of the original attributes. This provides a dynamic method for
generating kernel functions and gives a new design for treating such
functions that can supplement the usual procedures for creating kernel
functions proposed in the SVM domain. The mutually reinforcing
nature of these research avenues strongly motivates their exploration
in future work as a natural outgrowth of our present study.
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