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Simulation optimization is providing solutions to important practical problems previ-
ously beyond reach. This paper explores how new approaches are significantly expanding
the power of simulation optimization for managing risk. Recent advances in simulation
optimization technology are leading to new opportunities to solve problems more effec-
tively. Specifically, in applications involving risk and uncertainty, simulation optimization
surpasses the capabilities of other optimization methods not only in the quality of solu-
tions but also in their interpretability and practicality. In this paper, we demonstrate
the advantages of using a simulation optimization approach to tackle risky decisions, by
showcasing the methodology on two popular applications from the areas of finance and
business process design.
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1. Introduction

Whenever uncertainty exists, there is risk. Uncertainty is present when there is a
possibility that the outcome of a particular event will deviate from what is expected.
In some cases, we can use past experience and other information to try to estimate
the probability of occurrence of different events. This allows us to estimate a prob-
ability distribution for all possible events. Risk can be defined as the probability
of occurrence of an event that would have a negative effect on a goal. On the
other hand, the probability of occurrence of an event that would have a positive
impact is considered an opportunity (see Ref. 1 for a detailed discussion of risks and
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opportunities). Therefore, the portion of the probability distribution that represents
potentially harmful, or unwanted, outcomes is the focus of risk management.

Risk management is the process that involves identifying, selecting, and imple-
menting measures that can be applied to mitigate risk in a particular situation.1

The objective of risk management, in this context, is to find the set of actions (i.e.
investments, policies, resource configurations, etc.) to reduce the level of risk to
acceptable levels. What constitutes an acceptable level will depend on the situa-
tion, the decision makers’ attitude toward risk, and the marginal rewards expected
from taking on additional risk. In order to help risk managers achieve this objective,
many techniques have been developed, both qualitative and quantitative. Among
quantitative techniques, optimization has a natural appeal because it is based on
objective mathematical formulations that usually output an optimal solution (i.e.
set of decisions) for mitigating risk. However, traditional optimization approaches
are prone to serious limitations.

In Sec. 2 of this paper, we briefly describe two prominent optimization tech-
niques that are frequently used in risk management applications for their ability to
handle uncertainty in the data; we then discuss the advantages and disadvantages
of these methods. In Sec. 3, we discuss how simulation optimization can overcome
the limitations of traditional optimization techniques, and we detail some innova-
tive methods that make this a very useful, practical, and intuitive approach for risk
management. Section 4 illustrates the advantages of simulation optimization on two
practical examples. Finally, in Sec. 5 we summarize our results and conclusions.

2. Traditional Scenario-Based Optimization

Very few situations in the real world are completely devoid of risk. In fact, a person
would be hard-pressed to recall a single decision in their life that was completely
risk-free. In the world of deterministic optimization, we often choose to “ignore”
uncertainty in order to come up with a unique and objective solution to a problem.
However, in situations where uncertainty is at the core of the problem — as it is in
risk management — a different strategy is required.

In the field of optimization, there are various approaches designed to cope with
uncertainty.2,3 In this context, the exact values of the parameters (e.g. the data) of
the optimization problem are not known with absolute certainty, but may vary to
a larger or lesser extent depending on the nature of the factors they represent. In
other words, there may be many possible “realizations” of the parameters, each of
which is a possible scenario.

Traditional scenario-based approaches to optimization, such as scenario opti-
mization and robust optimization, are effective in finding a solution that is feasible
for all the scenarios considered and minimizing the deviation of the overall solu-
tion from the optimal solution for each scenario. These approaches, however, only
consider a very small subset of possible scenarios, and the size and complexity of
models they can handle are very limited.
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2.1. Scenario optimization

Dembo4 offers an approach to solving stochastic programs based on a method for
solving deterministic scenario subproblems and combining the optimal scenario
solutions into a single feasible decision.

Imagine a situation in which we want to minimize the cost of producing a set
J of finished goods. Each good j (j = 1, . . . , n) has a per-unit production cost cj

associated with it, as well as an associated utilization rate aij of resources for each
finished good. In addition, the plant that produces the goods has a limited amount
of each resource i (i = 1, . . . , m), denoted by bi. We can formulate a deterministic
mathematical program for a single scenario s (the scenario subproblem, or SP) as
follows:

SP:

zs = minimize
n∑

j=1

cs
jxj , (1)

Subject to
n∑

j=1

as
ijxj = bs

i for i = 1, . . . , m, (2)

xj ≥ 0 for j = 1, . . . , n, (3)

where cs, as, and bs, respectively, represent the realization of the cost coefficient, the
resource utilization, and the resource availability data under scenario s. Consider,
for example, a company that manufactures a certain type of Maple door. Depending
on the weather in the region where the wood for the doors is obtained, the costs of
raw materials and transportation will vary. The company is also considering whether
to expand production capacity at the facility where doors are manufactured, so
that a total of six scenarios must be considered. The six possible scenarios and
associated parameters for Maple doors are shown in Table 1. The first column
corresponds to the particular scenario; Column 2 denotes whether the facility is
at current or expanded capacity; Column 3 shows the probability of each capacity
scenario; Column 4 denotes the weather (dry, normal, or wet) for each scenario;
Column 5 provides the probability for each weather instance; Column 6 denotes
the probability for each scenario; Column 7 shows the cost associated with each

Table 1. Possible scenarios for Maple doors.

Scen Cap P (C) Wther P (W ) P (Scen) Cost cj Util aij Avail bj

1 Curr 50% Dry 33% 1/6 L H L
2 Norm 33% 1/6 M L L
3 Wet 33% 1/6 H L L

4 Exp 50% Dry 33% 1/6 L H H
5 Norm 33% 1/6 M L H
6 Wet 33% 1/6 H L H
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scenario (L = low, M = medium, H = high); Column 8 denotes the utilization rate
of the capacity (L = low, H = high); and Column 9 denotes the expected availability
associated with each scenario.

The model SP needs to be solved once for each of the six scenarios. The scenario
optimization approach can be summarized in two steps:

(1) Compute the optimal solution to each deterministic scenario subproblem SP.
(2) Solve a tracking model to find a single, feasible decision for all scenarios.

The key aspect of scenario optimization is the tracking model in step 2. For
illustration purposes, we introduce a simple form of tracking model. Let ps denote
the estimated probability for the occurrence of scenario s. Then, a simple tracking
model for our problem can be formulated as follows:

Minimize
∑

s

ps

(∑
j

cs
jxj − zs

)2

+
∑

s

ps

(∑
ij

as
ijxj − bs

i

)2

, (4)

Subject to xj ≥ 0 for j = 1, . . . , n. (5)

The purpose of this tracking model is to find a solution that is feasible under all
the scenarios, and penalizes solutions that differ greatly from the optimal solution
under each scenario. The two terms in the objective function are squared to ensure
nonnegativity.

More sophisticated tracking models can be used for different purposes. In risk
management, for instance, we may select a tracking model that is designed to
penalize performance below a certain target level.

2.2. Robust optimization

Robust optimization may be used when the parameters of the optimization problem
are known only within a finite set of values. The robust optimization framework
gets its name because it seeks to identify a robust decision — i.e. a solution that
performs well across many possible scenarios.

In order to measure the robustness of a given solution, different criteria may be
used. Kouvelis and Yu identify three criteria: (1) absolute robustness; (2) robust
deviation; and (3) relative robustness.5 We illustrate the meaning and relevance of
these criteria, by describing their robust optimization approach.

Consider an optimization problem where the objective is to minimize a certain
performance measure such as cost. Let S denote the set of possible data scenarios
over the planning horizon of interest. Also, let X denote the set of decision variables,
and P the set of input parameters of our decision model. Correspondingly, let P s

identify the value of the parameters belonging to scenario s, and let F s identify the
set of feasible solutions to scenario s. The optimal solution to a specific scenario s
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is then

zs = f(X∗
s , P s) = min

X∈F s
f(X, P s). (6)

We assume here that f is convex. The first criterion, absolute robustness, also
known as “worst-case optimization,” seeks to find a solution that is feasible for all
possible scenarios and optimal for the worst possible scenario. In other words, in
a situation where the goal is to minimize the cost, the optimization procedure will
seek the robust solution, zR, that minimizes the cost of the maximum-cost scenario.
We can formulate this as an objective function of the form

zR = min{max
s∈S

f(X, P s)}. (7)

Variations to this basic framework have been proposed (see, for example, Ref. 5)
to capture the risk-averse nature of decision makers, by introducing higher moments
of the distribution of zs in the optimization model, and implementing weights
as penalty factors for infeasibility of the robust solution with respect to certain
scenarios.

The problem with both of these approaches, as with most traditional optimiza-
tion techniques that attempt to deal with uncertainty, is their inability to handle
a large number of possible scenarios. Thus, they often fail to consider events that,
while unlikely, can be catastrophic. Recent approaches that use innovative simula-
tion optimization techniques overcome these limitations by providing a practical,
flexible framework for risk management and decision making under uncertainty.

3. Simulation Optimization

Simulation optimization can efficiently handle a much larger number of scenarios
than traditional optimization approaches, as well as multiple sources and types
of risk. Modern simulation optimization tools are designed to solve optimization
problems of the form

Minimize F (x) (Objective function),

Subject to Ax ≤ b (Constraints on input variables),

gl ≤ G(x) ≤ gu (Constraints on output measures),

l ≤ x ≤ u (Bounds),

where the vector x of decision variables includes variables that range over continuous
values and variables that only take on discrete values (both integer values and values
with arbitrary step sizes).6

The objective function F (x) is, typically, highly complex. Under the context of
simulation optimization, F (x) could represent, for example, the expected value of
the probability distribution of the throughput at a factory; the fifth percentile of
the distribution of the net present value (NPV) of a portfolio of investments; a
measure of the likelihood that the cycle time of a process will be lower than a
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desired threshold value; etc. In general, F (x) represents an output performance
measure obtained from the simulation, and it is a mapping from a set of values x

to a real value.
The constraints represented by inequality Ax ≤ b are usually linear (given that

nonlinearity in the model is embedded within the simulation itself), and both the
coefficient matrix A and the right-hand side values corresponding to vector b are
known.

The constraints represented by inequalities of the form gl ≤ G(x) ≤ gu

impose simple upper and/or lower bound requirements on an output function G(x)
that can be linear or nonlinear. The values of the bounds gl and gu are known
constants.

All decision variables x are bounded and some may be restricted to be discrete,
as previously noted. Each evaluation of F (x) and G(x) requires an execution of a
simulation of the system. By combining simulation and optimization, a powerful
design tool results.

Simulation enables fast, inexpensive and nondisruptive examination and testing
of a large number of scenarios prior to actually implementing a particular decision
in the “real” environment. As such, it is quickly becoming a very popular tool in
industry for conducting detailed “what-if” analysis. Since simulation approximates
reality, it also permits the inclusion of various sources of uncertainty and variabil-
ity into forecasts that impact performance. The need for optimization of simulation
models arises when the analyst wants to find a set of model specifications (i.e. input
parameters and/or structural assumptions) that leads to optimal performance. On
the one hand, the range of parameter values and the number of parameter combina-
tions are too large for analysts to enumerate and test all possible scenarios; hence,
they need a way to guide the search for good solutions. On the other hand, without
simulation, many real-world problems are too complex to be modeled by tractable
mathematical formulations that are at the core of pure optimization methods like
scenario optimization and robust optimization. This creates a conundrum; as shown
above, pure optimization models alone are incapable of capturing all the complexi-
ties and dynamics of the system; hence, one must resort to simulation, which cannot
easily find the best solutions. Simulation optimization resolves this conundrum by
combining both methods.

Optimizers designed for simulation embody the principle of separating the
method from the model. In such a context, the optimization problem is defined
outside the complex system. Therefore, the evaluator (i.e. the simulation model)
can change and evolve to incorporate additional elements of the complex system,
while the optimization routines remain the same. Hence, there is a complete sep-
aration between the model that represents the system and the procedure that is
used to solve optimization problems defined within this model.

The optimization procedure — usually based on metaheuristic search algo-
rithms — uses the outputs from the system evaluator, which measures the merit
of the inputs that were fed into the model. On the basis of both current and past
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Fig. 1. Coordination between the optimization engine and the simulation.

evaluations, the method decides upon a new set of input values (Fig. 1 shows the
coordination between the optimization engine and the simulation model).

Provided that a feasible solution exists, the optimization procedure ideally car-
ries out a special search where the successively generated inputs produce varying
evaluations, not all of them improving, but which over time provide a highly efficient
trajectory to the globally best solutions. The process continues until an appropri-
ate termination criterion is satisfied (usually based on the user’s preference for the
amount of time devoted to the search).

As stated before, the uncertainties and complexities modeled by the simulation
are often such that the analyst has no idea about the shape of the response sur-
face — i.e. the solution space. There exists no closed-form mathematical expression
to represent the space, and there is no way to gauge whether the region being
searched is smooth, discontinuous, etc. While this is enough to make most tradi-
tional optimization algorithms fail, metaheuristic optimization approaches, such as
tabu search7 and scatter search,8 overcome this challenge by making use of adap-
tive memory techniques and population sampling methods that allow the search to
be conducted on a wide area of the solution space, without getting stuck in local
optima.

The metaheuristic-based simulation optimization framework is also very flexi-
ble in terms of the performance measures the decision-maker wishes to evaluate.
In fact, the only limitation is not on the side of the optimization engine, but on
the simulation model’s ability to evaluate performance based on specified values for
the decision variables. In order to provide in-depth insights into the use of simu-
lation optimization in the context of risk management, we present some practical
applications through the use of illustrative examples.

4. Illustrative Examples

4.1. Selecting risk-efficient project portfolios

Companies in the Petroleum and Energy (P&E) Industry use project portfolio
optimization to manage investments in exploration and production, as well as power
plant acquisitions.9,10 Decision makers typically wish to maximize the return on
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invested capital, while controlling the exposure of their portfolio of projects to
various risk factors that may ultimately result in financial losses.

In this example, we look at a P&E company that has 61 potential projects in its
investment funnel. For each project, the pro-forma revenues for a horizon of 10–20
periods (depending on the project) are given as probability distributions. To carry
it out, each project requires an initial investment and a certain number of business
development, engineering and earth sciences personnel. The company has a budget
limit for its investment opportunities, and a limited number of personnel of each
skill category.

In addition, each project has a probability of success (POS) factor. This factor
has a value between 0 and 1 and affects the simulation as follows: let us suppose
that Project A has a POS = 0.6; therefore, during the simulation, we expect that we
will be able to obtain the revenues from Project A in 60% of the trials, while in the
remaining 40%, we will only incur the investment cost. The resulting probability
distribution of results from simulating Project A would be similar to that shown
in Fig. 2, where about 40% of the trials would have negative returns (i.e. equal to
the investment cost), and the remaining 60% would have returns resembling the
shape of its revenue distribution (i.e. equal to the simulated revenues minus the
investment cost).

Projects may start in different time periods, but there is a restricted window of
opportunity of up to three years for each project. The company must select a set
of projects to invest in that will best further its corporate goals.

Probably, the best-known model for portfolio optimization is rooted in the work
of Nobel laureate Harry Markowitz. Called the mean-variance model,11 it is based
on the assumption that the expected portfolio returns will be normally distributed.
The model seeks to balance risk and return in a single objective function, as follows.

Fig. 2. Sample probability distribution of returns for a single simulated project.
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Given a vector of portfolio returns r and a covariance matrix Q of returns, we can
formulate the model as follows:

Maximize rTw − kwTQw, (8)

Subject to
∑

i

ciwi = b, (9)

w ∈ {0, 1}, (10)

where k represents a coefficient of the firm’s risk aversion, ci represents the initial
investment in project i, wi is a binary variable representing the decision whether
to invest in project i, and b is the available budget. We will use the mean-variance
model as a base case for the purpose of comparing with other selected models of
portfolio performance.

To facilitate our analysis, we make use of the OptFolio r© software that combines
simulation and optimization into a single system specifically designed for portfolio
optimization.12,13

We examine three cases, including Value-at-Risk (VaR) minimization, to demon-
strate the flexibility of this method to enable a variety of decision alternatives that
significantly improve upon traditional mean-variance portfolio optimization, and
illustrate the flexibility afforded by simulation optimization approaches in terms
of controlling risk. The results also show the benefits of managing and efficiently
allocating scarce resources like capital, personnel, and time. The weighted average
cost of capital, or annual discount rate, used for all cases is 12%.

4.1.1. Case 1: Mean-variance approach

In this first case, we implement the mean-variance portfolio selection method of
Markowitz described above. The decision is to determine participation levels (0 or 1)
in each project with the objective of maximizing the expected NPV of the portfolio
while keeping the standard deviation of the NPV below a specified threshold of
$140M. We denote the expected value of the NPV by µNPV, and the standard
deviation of the NPV by σNPV. This case can be formulated as follows:

Maximize µNPV (objective function), (11)

Subject to σNPV < $140M (requirement), (12)∑
i

cixi ≤ b (budget constraint), (13)

∑
i

pijxi ≤ Pj ∀j (personnel constraints), (14)

All projects must start in year 1, (15)

xi ∈ {0, 1} ∀i (binary decisions). (16)

The optimal portfolio has the following performance metrics:

µNPV = $394M, σNPV = $107M, P (5)NPV = $176M,
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Fig. 2. Distribution of returns for mean-variance approach.

where P (5)NPV denotes the fifth percentile of the resulting NPV probability dis-
tribution (i.e. the probability of the NPV being lower than the P (5) value is 5%).
The bound imposed on the standard deviation in Eq. (12) does not seem binding.
However, due to the binary nature of the decision variables, no project additions
are possible without violating the bound. Figure 2 shows a graph of the probability
distribution of the NPV obtained from 1000 replications of this base model. The
thin line represents the expected value.

4.1.2. Case 2: Risk controlled by fifth percentile

In the context of risk management, statistics such as variance or standard deviation
of returns are not always easy to interpret, and there may be other measures that
are more intuitive and useful. For example, it provides a clearer picture of the risk
involved if we say “there is a 5% chance that the portfolio return will be below some
value X” than to say that “the standard deviation is $107M.” The former analysis
can be easily implemented in a simulation optimization approach by imposing a
requirement on the fifth percentile of the resulting distribution of returns, as we
describe here.

In Case 2, the decision is to determine participation levels (0, 1) in each project
with the objective of maximizing the expected NPV of the portfolio, while keeping
the fifth percentile of the NPV distribution above the value of the fifth percentile
obtained in Case 1. In this way, we seek to “move” the distribution of returns
further to the right, so as to reduce the likelihood of undesired outcomes.

This is achieved by imposing the requirement represented by Eq. (18) in the
model below. In other words, we want to find the portfolio that produces the maxi-
mum average return, as long as no more than 5% of the trial observations fall below
$176M. In addition, we allow for delays in the start dates of projects, according to
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windows of opportunity defined for each project. In order to achieve this, in the
simulation model we have created copies of each project that are shifted by one,
two, or three periods into the future (according to the windows of opportunity
defined for each project). Mutual exclusivity clauses among these stage copies of a
project ensure that only one start date is selected. For example, to represent the
fact that Project A can start at time t = 0, 1, or 2, we include the following mutual
exclusivity clause as a constraint:

Project A0 + Project A1 + Project A2 ≤ 1.

The subscript following the project name corresponds to the allowed start dates
for the project, and the constraint only allows at most one of these to be chosen:

Maximize µNPV, (17)

Subject to P (5)NPV > $176M (requirement), (18)∑
i

cixi ≤ b (budget constraint), (19)

∑
i

pijxi ≤ Pj ∀j (personnel constraints), (20)

∑
mi∈M

xi ≤ 1 ∀i (mutual exclusivity), (21)

xi ∈ {0, 1} ∀I (binary decisions), (22)

where mi denotes the set of mutually exclusive projects related to project i.
In this case we have replaced the standard deviation with the fifth percentile as

a measure of risk containment. The resulting portfolio has the following attributes:

µNPV = $438M, σNPV= $140M, P (5)NPV = $241M.

By using the fifth percentile instead of the standard deviation as a measure of
risk, we are able to obtain an outcome that shifts the distribution of returns to the
right, compared with Case 1, as shown in Fig. 3.

This case clearly outperforms Case 1. Although the distribution of returns
exhibits a wider range (remember, we are not constraining the standard devia-
tion here), not only we do obtain significantly better financial performance but we
also achieve a higher personnel utilization rate and a more diverse portfolio.

4.1.3. Case 3: Probability maximizing and VaR

In Case 3, the decision is to determine participation levels (0, 1) in each project
with the objective of maximizing the probability of meeting or exceeding the mean
NPV found in Case 1. This objective is expressed in Eq. (23) of the following
model:

Maximize P (NPV ≥ $394M), (23)
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Fig. 3. Distribution of returns for Case 2.

Subject to
∑

i

cixi ≤ b (budget constraint), (24)

∑
i

pijxi ≤ Pj ∀j (personnel constraints), (25)

∑
mi∈M

xi ≤ 1 ∀i (mutual exclusivity), (26)

xi ∈ {0, 1} ∀i (binary decisions). (27)

This case focuses on maximizing the chance of achieving a goal and essentially
combines performance and risk containment into one metric. The probability in
(23) is not known a priori, hence, we must rely on the simulation to obtain it. The
resulting optimal solution yields a portfolio that has the following attributes:

µNPV = $440M, σNPV= $167M, P (5) = $198M.

Although this portfolio has a performance similar to the one in Case 2, it has a
70% chance of achieving or exceeding the NPV goal (whereas Case 1 had only a 50%
chance). As can be seen in the graph of Fig. 4, we have succeeded in shifting the
probability distribution even further to the right, therefore increasing our chances
of exceeding the returns obtained with the traditional Markowitz approach. In
addition, in Cases 2 and 3, we need not make any assumption about the distribution
of expected returns.

As a related corollary to the last case, we can conduct an interesting analysis
that addresses VaR. In traditional (securities) portfolio management, VaR is defined
as the worst expected loss under normal market conditions over a specific time
interval and at a given confidence level. In other words, VaR measures how much
the investor can lose, with probability = α, over a certain time horizon.14
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Fig. 4. Distribution of returns for Case 3.

In the case of project portfolios, we can define VaR as the probability that the
NPV of the portfolio will fall below a specified value. Going back to our present
case, the manager may want to limit the probability of incurring negative returns.
In this example, we formulate the problem in a slightly different way: we still want
to maximize the expected return, but we limit the probability that we incur a loss
to α = 1% by using the requirement shown in Eq. (29) as follows:

Maximize µNPV, (28)

Subject to P (NPV < 0) ≤ 1% (requirement), (29)∑
i

cixi ≤ b (budget constraint), (30)

∑
i

pijxi ≤ Pj ∀j (personnel constraints), (31)

∑
mi∈M

xi ≤ 1 ∀i (mutual exclusivity), (32)

xi ∈ {0, 1} ∀i (binary decisions). (33)

The portfolio performance under this scenario is

µNPV = $411M, σNPV = $159M, P (5) = $195M.

The results from the VaR model turn out to be slightly inferior to the case
where the probability was maximized. This is not a surprise, since the focus of
VaR is to limit the probability of downside risk, whereas before, the goal was to
maximize the probability of obtaining a high expected return. However, this last
analysis could prove valuable for a manager who wants to limit the VaR of the
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Fig. 5. Process flowchart for Level 1 patients.

selected portfolio. As shown here, for this particular set of projects, a very good
portfolio — in financial terms — can still be selected with that objective in mind.

4.2. Risk management in business process design

Very common measures of process performance are the cycle time, a.k.a turnaround
time, the throughput, and the operational cost. For our present example, we con-
sider a process manager at a hospital emergency room (ER). Typically, emergency
patients that arrive at the ER present different levels of criticality. In our example,
we consider two levels: Level 1 patients are very critical and require immediate
treatment; Level 2 patients are not as critical and must undergo an assessment by
a triage nurse before being assigned to an ER room. Usually, a patient will have a
choice in the care provider he or she prefers; hence, there is an inherent risk of lost
business related to the quality of service provided. For instance, if patients must
spend a very long time in the ER, there is a risk that patients will prefer to seek
care at another facility on subsequent, follow-up visits.

Figure 5 shows a high-level flowchart of the process for Level 1 patients (the
process for Level 2 patients differs only in that the “Fill out registration” activity
is done before the “Transfer to room” activity, during the triage assessment).

The current operation consists of 7 nurses, 3 physicians, 4 patient care techni-
cians (PCTs), 4 administrative clerks and 20 ER rooms. This current configuration
has a total operating cost (i.e. wages, supplies, ER rooms’ costs, etc.) of $52,600
per 100h of operation, and the average time a Level 1 patient spends at the ER
(i.e. cycle time) has been estimated at 1.98h. Hospital management has just issued
the new operational budget for the coming year and has allocated to the ER a
maximum operational cost of $40,000 per 100h of operation. The manager has
three weeks to make changes to the process to ensure compliance with the budget,
without deteriorating the current service levels.

The process manager has stated his goals as: to minimize the average cycle time
for Level 1 patients, while ensuring that the operational cost is below $40,000 per
100 h of operation.

Since arrival times and service times in the process are stochastic, we use a
simulation model to simulate the ER operation, and OptQuest to find the best
configuration of resources in order to achieve the manager’s goals. We obtain the
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Fig. 6. Redesigned process for Level 1 patients.

following results:

• operational cost = $36, 200 (three nurses, three physicians, one PCT, two clerks,
twelve ER rooms);

• average cycle time = 2.08 h.

The configuration of resources above (shown in parentheses) results in the lowest
possible cycle time given the new operational budget for the ER. Obviously, in order
to improve the service level at the current operational budget, it is necessary to re-
design the process itself.

The new process proposed for Level 1 patients is depicted in Fig. 6. In the
proposed process, the “Receive treatment” and “Fill out registration” activities are
now done in parallel, instead of in sequence. The simulation of this new process,
with the resource configuration found earlier, reduces the average cycle time from
2.08 to 1.98h.

When designing business processes, however, it is very important to set
goals that are not subject to the Law of Averages — that is, the goals should
be set so that they accommodate a large percentage of the demand for the product
or service that the process is intended to deliver. In the above example, it is pos-
sible that the probability distribution of cycle time turns out to be highly skewed
to the right, so that even if the average cycle is under 2 h, there could be a very
large number of patients who will spend a much longer time in the ER. It would be
better to restate the manager’s performance goals as follows: ensure that at least
95% of Level 1 patients will spend no more than 2 h in the ER while ensuring that
the operational cost is under $40,000. This gives a clear idea of the service level to
which the process manager aspires.

If we re-optimize the configuration of resources with the new goal, we obtain
the following results:

• operational cost = $31, 800 (four nurses, two physicians, two PCTs, two clerks,
nine ER rooms);

• average cycle time = 1.94h;
• 95th percentile of cycle time = 1.99 h.
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Through the use of simulation optimization, we have obtained a process design
that complies with the new budget requirements as well as with an improved service
level. If implemented correctly, we can be sure that 95% of the critical patients in
the ER will be either released or admitted into the hospital for further treatment
in less than 2 h. Thus, the risk of having unsatisfied patients is minimized.

5. Results and Conclusions

Practically every real-world situation involves uncertainty and risk, creating a need
for optimization methods that can handle uncertainty in model data and input
parameters. We have briefly described two popular methods, scenario optimization
and robust optimization, that seek to overcome limitations of classical optimization
approaches for dealing with uncertainty and that undertake to find high-quality
solutions that are feasible under as many scenarios as possible.

However, these methods are unable to handle problems involving moderately
large numbers of decision variables and constraints, or involving significant degrees
of uncertainty and complexity. In these cases, simulation optimization is becom-
ing the method of choice. The combination of simulation and optimization affords
all the flexibility of the simulation engine in terms of defining a variety of perfor-
mance measures and risk profiles, as desired by the decision maker. In addition, as
we demonstrate through two practical examples, modern optimization engines can
enforce requirements on one or more outputs from the simulation, a feature that
scenario-based methods cannot handle. This affords the user different alternatives
for controlling risk, while ensuring that the performance of the system is optimized.
The combination of simulation and optimization creates a tool for decision making
that is fast (a simulation runs at a small fraction of real time, and the optimization
guides the search for good solutions without the need to enumerate all possibili-
ties), inexpensive, and nondisruptive (solutions can be evaluated without the need
to stop the normal operation of the business, as opposed to pilot projects, which
can also be quite expensive).

Finally, simulation optimization produces results that can be conveyed and
grasped in an intuitive manner, providing the user with an especially useful and
easy-to-use tool for identifying improved business decisions under risk and uncer-
tainty.
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